Tetrahedron Letters 54 (2013) 3550-3553

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Amberlite IR-120H as an efficient and versatile solid phase catalyst for nucleophilic substitution of propargylic alcohols

very mild conditions in excellent yields.

Satheesh Gujarathi, Howard P. Hendrickson, Guangrong Zheng*

Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA

ARTICLE INFO

ABSTRACT

Article history: Received 5 April 2013 Revised 11 April 2013 Accepted 26 April 2013 Available online 3 May 2013

Keywords: Amberlite IR-120H Nucleophilic substitution Propargylic alcohols Solid phase catalyst Regioselectivity

A challenging yet important goal in organic synthesis is to maximize synthetic efficiency in transforming starting materials to the target molecules. Readily available starting materials and reagents, high yield, high selectivity, mild reaction conditions, and high atom economy are characteristics of an efficient synthetic method. Propargylic substitution reactions of activated or unactivated propargylic alcohols or propargylic esters with C-nucleophiles and heteroatom centered nucleophiles have recently been extensively explored. These reactions are generally achieved through activation of the acetylene moiety by forming cobalt complexes (Nicholas reaction)¹ or through the catalysis of rhenium,² ruthenium,³ or gold⁴ metal complexes. However, these reactions suffer from the high cost of reagents and catalysts. Alternative catalysts, including $\begin{array}{l} {\sf FeCl}_3,{}^5 \; {\sf BiCl}_3,{}^6 \; [{\sf bmim}]{\sf PF}_6/{\sf Bi}({\sf NO}_3)_3,{}^7 \; {\sf PMA-silica \; gel},{}^8 \; {\sf I}_2,{}^9 \; {\sf InCl}_3,{}^{10a} \\ {\sf InBr}_3,{}^{10b} \; {\sf Sc}({\sf OTf})_3,{}^{11} \; {\sf Yb}({\sf OTf})_3,{}^{12} \; {\sf Al}({\sf OTf})_3,{}^{13} \; {\sf CeCl}_3,{}^{14} \; {\sf Pd-Sn},{}^{15} \; {\sf and} \end{array}$ PTSA,¹⁶ have been introduced for these reactions; however, many of them involve either large amount of catalyst or limited to selective nucleophiles. Thus, highly efficient, inexpensive reaction systems with good selectivity for these transformations are still highly desirable.

Heterogeneous catalysis has played a central role in various organic transformations. Among heterogeneous catalysts, ion-exchange resins are widely used owing to their low cost, reusability, wide range of acid/base strength, ease of handling, environmental compatibility, and low toxicity. Moreover, they can be easily recovered from reaction mixtures by filtration and can be reused after activation or even without activation, making the process economically viable. Herein, we report a simple and straightforward method using Amberlite IR-120H ion-exchange resin as a catalyst for the nucleophilic substitution of propargylic alcohols with various nucleophiles in excellent yields under very mild reactions conditions.

Using 1-(4-methoxyphenyl)-3-phenylprop-2-yn-1-ol (1a) and indole (2a) as model reactants, it was observed that the reaction proceeded smoothly in CH₃CN at room temperature in the presence of Amberlite IR-120H resin (Scheme 1). Amberlite IR-120H

Scheme 1. Substitution of the OH group in propargylic alcohol with indole.

Table 1

Optimization of the reaction conditions^a

A highly efficient Amberlite IR-120H resin mediated nucleophilic substitution of the hydroxyl group of

propargylic alcohols with a wide range of nucleophiles is reported. The reactions were achieved under

Amberlite IR-120H (mg/mmol)	Time ^b (min)	Yield ^c (%)
50	120	45
150	60	70
300	30	93
	Amberlite IR-120H (mg/mmol) 50 150 300	Amberlite IR-120H (mg/mmol) Time ^b (min) 50 120 150 60 300 30

^a All reactions were carried out with 1a(1 mmol), and 2a(1.2 mmol) in CH₃CN at rt.

 $^{\rm b}\,$ Reaction time before filtration; both 1 and 2 were incomplete.

^c Isolated yield.

© 2013 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +1 501 526 6787; fax: +1 501 526 5945. *E-mail address:* gzheng@uams.edu (G. Zheng).

^{0040-4039/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.04.120

Table 2

Amberlite IR-120H resin promoted substitution of the hydroxyl group in propargylic alcohols with various nucleophiles^a

Entry	Alcohol	Nucleophile	Product ^b	Time (min) ^c	Temperature (°C)	Yield (%) ^d
a	OH MeO Ph	ZT	3a	30	rt	93
b	OH	E H	NH 3b	30	60	87
с	OH MeO Ph		Brock Ph	30	rt	90
d	HO Ph		HN Ph 3d	120	rt	87
e	HO N Ts	E H	H H H H H H H H H H H H H H H H H H H	90	rt	87
f	Ph Ph	N N N N N N N N N N N N N N N N N N N	Brite Street Str	180	60	83
g	OH MeO Ph	ОН	HO Ph 3g	60	rt	93
h	OH	ОН	HO HO Ph	90	60	90
i	Ph F	ОН	HO F	180	60	90
j	MeO OH Ph	0	MeO Ph 3j	120	rt	90

(continued on next page)

Download English Version:

https://daneshyari.com/en/article/5272986

Download Persian Version:

https://daneshyari.com/article/5272986

Daneshyari.com