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a b s t r a c t

Nonlinear dimensionality reduction is a challenging problem encountered in a variety of high dimen-
sional data analysis. Based on the different geometric intuitions of manifolds, maximum variance unfold-
ing (MVU) and Laplacian eigenmaps are designed for detecting the different aspects of data set. In this
paper, combining the ideas of MVU and Laplacian eigenmaps, we propose a new nonlinear dimensionality
reduction method called distinguishing variance embedding (DVE), which unfolds the data manifold by
maximizing the global variance subject to the proximity relation preservation constraint originated in
Laplacian eigenmaps. We illustrate the algorithm on easily visualized examples of curves and surfaces,
as well as on actual images of faces, handwritten digits, and rotating objects.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Dimensionality reduction [4] is the transformation of high
dimensional data into meaningful representation of reduced
dimensionality. It is important in many domains, since it facilitates
image compression [26], computer vision [9,14], pattern recogni-
tion [22], and computational neuroscience [19] by mitigating the
curse of dimensionality and other undesired properties of high
dimensional space. Principal component analysis (PCA) [7,8,12]
and metric multidimensional scaling (MDS) [5] are two classical
linear dimensionality reduction methods. They can generate faith-
ful low dimensional representations when the high dimensional
input patterns are mainly confined to a low dimensional linear
subspace. However, they do not generally succeed in the case that
the input patterns lie on or near a low dimensional manifold
embedded in a high dimensional space [18]. A common example
of a nonlinear manifold embedded in a high dimensional space is
image vectors of a face observed under different poses and lighting
conditions [21]. In such a case, the dimensionality is restricted by
the degrees of freedom of the physical constraints under which
the images were taken. Whereas, the data has a much greater
dimensionality depending on the resolution of the image.

Recently, several manifold learning algorithms have been
proposed for dealing with the high dimensional data that has been
sampled from a low dimensional manifold, such as Isomap [21],
locally linear embedding (LLE) [16,17], Laplacian eigenmaps [1,2],

local tangent space analysis (LTSA) [28], and maximum variance
unfolding (MVU) [20,23,25]. Based on the different geometric intu-
itions [4,18], these methods can reveal the low dimensional struc-
ture of the submanifold (and sometimes even the dimensionality
itself) that cannot be detected by classical linear methods.

Laplacian eigenmaps is based on the graph Laplacian that can be
viewed as a discrete approximation to the Laplace–Beltrami opera-
tor on continuous manifolds. Laplacian eigenmaps is a local algo-
rithm for nonlinear dimensionality reduction, that the nearby
points in the original space are mapped nearby and the far points
are not explicitly considered. Hence the algorithm imposes a natural
clusters of the data. However not all the data sets necessarily have
meaningful clusters. Moreover, in the presence of noise around the
manifold, the local properties of manifold do not necessarily follow
the global structure of the manifold [3,15]. In these case the global
algorithms such as MVU and Isomap might be more appropriate.

MVU is based fundamentally on the notion of isometry, a
smooth invertible mapping that looks locally like a rotation plus
translation. It attempts to ‘‘unfold” a data manifold by pulling
the input patterns as far apart as possible subject to the constraints
that distances and angles between neighboring points are strictly
preserved, i.e. local isometry. MVU is a global algorithm for nonlin-
ear dimensionality reduction, in which all the data pairs, nearby
and far, are considered. The final optimization of MVU is reformu-
lated as an instance of semidefinite programming (SDP). Large-
scale application is a particular challenge to MVU due to the ex-
pense of solving SDP.

Combining the ideas of MVU and Laplacian eigenmaps, in this
paper, we present a new algorithm for nonlinear dimensionality
reduction, called distinguishing variance embedding (DVE). Similar
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to MVU and Isomap, DVE attempts to detect the global structure of
nonlinear manifolds. However, our algorithm is simple to imple-
ment, and its main optimization involves a eigenvalue problem.
Compared with MVU and Isomap, the computational complexity
is dramatically reduced. The algorithm can be viewed as a variance
of MVU that relaxes the strict distance-preserving constraints. This
relaxation makes DVE relatively insensitive to noise.

The organization of this paper is as follows. In Section 2, we
briefly review MVU and Laplacian eignmaps. In Section 3, we first
show how to derive the optimization of DVE from the geometric
intuitions of MVU and Laplacian eignmaps; then formally present
the algorithmic procedure and discuss the problem of parameters
selection; the brief comparison between DVE and MVU is also pro-
vided in this section. In Section 4, we present experimental results
on several data sets, including easily visualized examples of curves
and surfaces, as well as images of faces, handwritten digits, and
rotating objects. Finally, we provide some concluding remarks
and suggestions for future work in Section 5.

2. Laplacian eignmaps and MVU

Assume that high dimensional data set has been sampled from a
low dimensional manifold M. Algorithms for manifold learning
map high dimensional inputs X ¼ ðx1;x2; . . . ;xnÞT to low dimen-
sional outputs Y ¼ ðy1; y2; . . . ; ynÞ

T that provide faithful representa-
tions of high dimensional inputs, where xi 2 Rd; yi 2 Rr , and r � d.

Laplacian eignmaps and MVU both can be viewed as the graph-
based methods, so they share some common properties: they both
construct a weighted neighborhood graph G whose n nodes repre-
sent input patterns and edges indicate neighborhood relations; the
low dimensional embeddings are derived from the bottom or top
eigenvectors of the matrix computed from the neighborhood graph
G. Our algorithms builds on the two methods, so we begin by
reviewing them.

2.1. Laplacian eigenmaps

Laplacian eigenmaps is a local structure preserving algorithm
which is based on a simple geometric intuition: nearby inputs in
the high dimensional space should be mapped to nearby in the
reduced space. It first constructs a neighborhood graph G. Typi-
cally, the weights of the edges in the graph are computed by
using the Gaussian kernel function, leading to a sparse matrix
W with entries

Wij ¼ exp
�kxi � xjk2

r2

 !
ð1Þ

where r2 is a scale parameter. Let D denotes the diagonal matrix
with elements Dii ¼

P
jWij, which provides a natural measure on

the vertices of the graph. The outputs yi can be chosen to minimize
the cost function:

minimize
Xn

i;j¼1

kyi � yjk
2Wij ð2Þ

subject to
Xn

i¼1

kyik
2Dii ¼ 1

the constraint removes an arbitrary scaling factor in the embedding.
In the cost function (2), large weights Wij correspond to the

small distances between the data pairs xi and xj. Hence, the differ-
ence between their low dimensional representations yi and yj

highly contributes to the cost function. As a consequence, nearby
points in the high dimensional space are brought closer together
in the low dimensional representation, so the neighborhood rela-
tions are correctly preserved by Laplacian eigenmaps.

2.2. Maximum variance unfolding

MVU is the nonlinear counterpart of PCA [18,24]. The algorithm
attempts to find the low dimensional embeddings that have the
maximum total variance, while preserving the distances between
neighboring points. Like Laplacian eigenmaps, the first step of the
algorithm is to construct a neighborhood graph G by connecting
each input xi with its k-nearest neighbors. Let Wij 2 f0;1g indicate
whether there is an edge between xi and xj in the graph G. The out-
puts yi from MVU are those that solve the following optimization:

maximize
Xn

i;j¼1

kyi � yjk
2 ð3Þ

subject to kyi � yjk
2Wij ¼ kxi � xjk2WijX

i

yi ¼ 0

Here, the first constraint enforces that distances between nearby in-
puts match distances between nearby outputs. The second constraint
removes a translational degree of freedom from the final solution.

The optimization as stated above is not convex, but it can be
reformulated as a semidefinite programming (SDP) by defining a
inner product matrix K of the low dimensional data representa-
tions, i.e. Kij ¼ yi � yj. Let kxi � xjk2 ¼ dij, we can write the SDP prob-
lem as follows:

maximize TrðKÞ ð4Þ
subject to Kii � 2Kij þ Kjj ¼ dij for 8ði; jÞ 2 GX

ij

Kij ¼ 0

K P 0

From the solution K of the SDP, the low dimensional data repre-
sentation Y can be obtained by performing a singular value decom-
position, i.e. Y ¼ K

1
2.

3. Distinguishing variance embedding

3.1. The optimization

Here we first reformulate Eq. (3) of MVU by introducing the
complementary graph G0 of the neighborhood graph G. In graph
G0, an edge with weight W 0

ij ¼ 1 is added between nodes i and j if
they are not connected in graph G, otherwise not. Noting that the
graph sum Gþ G0 is a complete graph, so Eq. (3) can be rewritten as

max
Xn

i;j¼1

kyi � yjk
2Wij þ

Xn

i;j¼1

kyi � yjk
2W 0

ij ð5Þ

For the fixed data set x1;x2; . . . ; xn, the neighborhood relations
are invariable with the certain nearest neighbor criteria. So the to-
tal sum of neighboring points

P
ijkxi � xjk2Wij is equal to a con-

stant c. Due to local distance-preserving constraints
kyi � yjk

2Wij ¼ kxi � xjk2Wij, we have
P

ijkyi � yjk
2Wij ¼ c. The

equivalent characterization of the Eq. (3) is

max
Xn

i;j¼1

kyi � yjk
2W 0

ij ð6Þ

For the convenience of comparison, we rewrite the objective func-
tion (2) of Laplacian eignmaps

min
Xn

i;j¼1

kyi � yjk
2Wij ð7Þ

Interestingly, based on different geometric intuitions, com-
pletely different variance optimization strategies are adopted in
MVU and Laplacian eignmaps. In MVU, to unfold the data set, the
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