Tetrahedron Letters 53 (2012) 2410-2413

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Rapid and efficient synthesis of 2-substituted-tetrahydropyrido[3,4-*b*] quinoxalines using TDAE strategy

Omar Khoumeri, Marc Montana, Thierry Terme, Patrice Vanelle*

ABSTRACT

(toluenesulfonyl)benzylimines.

Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France

ARTICLE INFO

Article history: Received 30 January 2012 Revised 21 February 2012 Accepted 29 February 2012 Available online 7 March 2012

Keywords: TDAE Quinoxaline N-(Toluenesulfonyl)benzylimine Pyrido[3,4-b]quinoxaline

The quinoxaline derivatives show very interesting biological properties,¹ such as antibacterial,^{1b} antiviral,² anticancer,³ antifungal, antihelmintic, antileishmanial,⁴ anti-HIV,⁴ insecticidal, and anti-inflammatory activites,⁵ and their interest in medicinal chemistry is far from coming to an end.⁶ Many drug candidates bearing quinoxaline core structures are in clinical trials in antiviral,⁷ anticancer, antibacterial,^{1d} and CNS (central nervous system) therapeutic areas. Among them, the XK469 ((±)-2-[4-(7-chloro-2-quinoxaliny)oxy]phenoxy propionic acid) (Fig. 1) was known as anti neoplastic quinoxaline topoisomerase II inhibitor and possesses antitumor activity especially against murine and human solid tumors.⁸⁻¹⁰

On the other hand, the tetra- and dihydropyrido[3,4-*b*]pyrazine derivatives exhibited interesting biological activity as anticancer agents.¹¹ In spite of the great interest that could represent combined structures presenting the quinoxaline and the tetrahydropyridine nucleus, few synthesis of tetra-hydropyrido[3,4-*b*] quinoxaline derivatives have been reported.¹²

Since 2003, we have shown that from *o*- and *p*-nitrobenzyl chloride, tetrakis(dimethylamino)ethylene (TDAE)¹³ could generate a nitrobenzyl carbanion which is able to react with various electrophiles as aromatic aldehydes, α -ketoester, ketomalonate, α -ketolactam and sulfonimine derivatives.¹⁴ In quinoxaline series, we have reported the reaction of 2-(dibromomethyl)quinoxaline with aromatic aldehydes in the presence of TDAE furnished a mixture of cis/trans isomers of oxiranes¹⁴ and the synthesis of new α -chlorok-

© 2012 Elsevier Ltd. All rights reserved.

We report herein an original and rapid synthesis of substituted 2-tosyl-1,2,3,4-tetrahydropyrido[3,4-

blguinoxaline derivatives by TDAE strategy from 2,3-bis(bromomethyl)guinoxaline and N-

Figure 1. Structure of XK469.

etones based on TDAE strategy from the reaction between 2-(trichloromethyl)-quinoxaline and aromatic aldehydes.¹⁵

In continuation of our program directed toward the study of single electron transfer reactions of bioreductive alkylating agents¹⁶ and the preparation of new potentially bioactive compounds as anticancer agents,¹⁷ we report herein an original and efficient synthesis of new substituted 2-tosyl-1,2,3,4-tetrahydro-pyrido[3,4-*b*]quinoxalines based on the TDAE strategy from the reaction between 2,3-bis(bromomethyl)quinoxaline and sulfonimine.

The reaction of 2,3-bis(bromomethyl)quinoxaline **1** with 3 equiv of sulfonimine **2a** in the presence of TDAE at -20 °C for 1 h, led to the 2-tosyl-1,2,3,4-tetrahydropyrido[3,4-*b*]quinoxaline **3a**. The reaction of 2,3-bis(bromomethyl)quinoxaline **1** with sulfonimine **2a** was studied (Scheme 1) under various conditions (Table 1). The best yield in product **3a** (60%) is obtained using 1 equiv of TDAE in THF at -20 °C for 1 h.

We have generalized this reaction with other sulfonimines **2b**-**k** to prepare a new series of 2-tosyl-1,2,3,4-tetrahydropyrido[3,4-*b*]quinoxalines **3b**- \mathbf{k}^{18} in moderate to good yields (56–67%) as shown in Scheme 2 and reported in Table 2.

The formation of these pyrido[3,4-*b*]quinoxaline derivatives **3a–k** could be explained by two mechanisms, the first one would

^{*} Corresponding author. Tel.: +33 49183 5580.

E-mail addresses: patrice.vanelle@univ-amu.fr, patrice.vanelle@pharmacie. univ-mrs.fr (P. Vanelle).

^{0040-4039/\$ -} see front matter \odot 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.02.119

Scheme 1. Reaction of 2,3-bis(bromomethyl)quinoxaline **1** with *N*-(toluenesulfonyl)benzylimine **2a**.

Table 1

Optimization of the reaction of 2,3-bis(bromomethyl)quinoxaline **1** with *N*-(toluene-sulfonyl)benzylimine **2a** using TDAE strategy^a

Entry	Solvent	Equiv of TDAE	Yield ^b (%)
1	THF	1.05	46 ^c
2	THF	1.05	60
3	THF	1.5	29
4	DMF	1.05	41

^a All the reactions are performed using 3 equiv of *N*-(toluenesulfonyl)benzylimine **2a**, 1 equiv of 2,3-bis(bromomethyl)quinoxaline **1** and 1 equiv of TDAE in anhydrous THF stirred at -20 °C for 1 h.

^b All yields refer to chromatographically isolated pure products and are relative to 2,3-bis(bromomethyl)quinoxaline **1**.

 $^{\rm c}$ The reaction mixture was stirred at -20 °C for 1 h and then warmed up to room temperature for 0.5 h.

Scheme 2. Reaction of 2,3-bis(bromomethyl)quinoxaline 1 with substituted *N*-(toluenesulfonyl)benzylimine 2b-k.

occur by a nucleophilic addition of carbanion formed by the action of TDAE with 2,3-bis(bromomethyl)quinoxaline, on the imine group of sulfonimine **2a-k** followed by an intramolecular nucleophilic substitution with the second bromomethyl group. The second pathway would envisage the formation of the biradical of 2,3-bis(bromomethyl)quinoxaline which reacts with imine as suggested by Nishiyama in benzene series.¹⁹

In the absence of intermediates or by-products in this reaction and in order to clarify this mechanism, we envisage the reaction of 2,3-bis(bromomethyl)quinoxaline **1** with another kind of unsaturated compound such as benzaldehyde **4** under the optimal conditions (Scheme 3).

This reaction has not furnished the expected 3-phenyl-3,4-dihydro-1*H*-pyrano[3,4-*b*]quinoxaline, but traces of 2-[3-(bromomethyl)quinoxalin-2-yl]-1-phenylethanol **5** have been identified. The formation of this product may be explained by an ionic addition of carbanion, formed by the action of TDAE with 2,3-bis(bromomethyl)quinoxaline, on the carbonyl group of benzaldehyde. However, the alcoholate intermediate is not enough nucleophile to cyclize by an intramolecular nucleophilic substitution explaining the absence of the formation of 3-phenyl-3,4-dihydro-1*H*-pyrano[3,4-*b*]quinoxaline.

These results with benzaldehyde would seem to confirm an ionic pathway for the formation of these pyrido[3,4-*b*] quinoxaline derivatives **3a–k**.

In conclusion, we have developed in this work the synthesis of new substituted pyrido[3,4-*b*]quinoxalines by an easy, original, and mild procedure using TDAE methodology from 2,3-bis(bromo-

Table 2

Reaction of 2,3-bis(bromomethyl)quinoxaline **1** with substituted *N*-(toluenesulfo-nyl)benzylimine **2b-k** using TDAE strategy^a

^a All the reactions are performed using 3 equiv of substituted *N*-(toluenesulfonyl)benzylimines **2b-k**, 1 equiv of 2,3-bis(bromomethyl)quinoxaline **1** and 1 equiv of TDAE in anhydrous THF stirred at -20 °C for 1 h.

^b All yields refer to chromatographically isolated pure products and are relative to 2,3-bis(bromomethyl)quinoxaline **1**.

Scheme 3. Reaction of 1 with benzaldehyde 4.

methyl)quinoxaline **1** and sulfonimines **2a–k**. The anti-plasmodial and cytotoxic activities of all synthesized compounds are under active investigation.

Acknowledgments

This work supported by the Centre National de la Recherche Scientifique. We express our thanks to Vincent Remusat for ¹H and ¹³C NMR spectra recording. Download English Version:

https://daneshyari.com/en/article/5273152

Download Persian Version:

https://daneshyari.com/article/5273152

Daneshyari.com