Tetrahedron Letters 51 (2010) 60-63

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of new β - and γ -aminopyrrolidinephosphonates via 1,3-dipolar cycloaddition of substituted vinylphosphonates

Nicolas Rabasso, Antoine Fadel*

Laboratoire de Synthèse Organique et Méthodologie, ICMMO (UMR 8182-CNRS), Bât. 420, Université Paris-Sud 11, 91405 Orsay, France

ARTICLE INFO

Article history: Received 15 September 2009 Revised 13 October 2009 Accepted 16 October 2009 Available online 22 October 2009

Keywords: β-Aminophosphonic Acids Vinylphosphonates 1,3-Dipolar cycloaddition Cross-metathesis Pyrrolidines

ABSTRACT

Synthesis of α - and β -(aminomethyl)vinylphosphonates was achieved from vinyl bromide via a crosscoupling reaction with triethyl phosphite and by cross-metathesis of allyl bromide and vinylphosphonate, respectively. The 1,3-dipolar cycloaddition of these vinylphosphonates with a dipole in the presence of trifluoroacetic acid afforded selectively the β -aminopyrrolidinephosphonates. Syntheses of *cis*- and *trans*- γ -aminopyrrolidinephosphonates are also described.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Vinylphosphonates have been known for several decades¹ and constitute a very important class of building blocks for the synthesis of complex structures,² including biologically active molecules.³ The β -aminovinylphosphonates, although rarely described,⁴ have been used for the synthesis of β -aminophosphonic acid derivatives⁵ that display interesting biological properties such as antibiotics,⁶ enzyme inhibitors,⁷and anti-HIV agents.⁸ However, synthesis of heterocyclic β -aminophosphonates, in particular pyrrolidine analogues, remains a challenge.

Syntheses of substituted pyrrolidines are largely reported by cycloaddition of a 1,3-dipole with vinyl derivatives.⁹ To the best of our knowledge, only one 1,3-dipolar cycloaddition reaction has been reported between a 1,3-dipole and an unsubstituted vinyl-phosphonate to provide a heterocyclopentylphosphonate.¹⁰ On the contrary, the 1,3-dipolar cycloaddition reaction with substituted vinylphosphonate is still unknown.

In continuation of our work on the development of new methodology for the synthesis of heterocyclic aminophosphonic acids,¹¹ and considering the importance of heterocyclic aminophosphonates in synthetic, agrochemical, and medicinal chemistry,¹² we decided to investigate the 1,3-dipolar cycloaddition of α - and β -substituted vinylphosphonates with azomethine ylides to access a range of pyrrolidines, for phosphonopeptide construction (Fig. 1). In this Letter, we report the synthesis of the first members of a new class of β - and γ -aminophosphoryl pyrrolidines.

2. Results and discussion

Synthesis of β -aminovinylphosphonates **1** was achieved by the S_N2 displacement of the allylic bromide **2** by oxazolidinone or amide **3** in the presence of a base (Cs₂CO₃ or NaH). Then, vinyl bromide **4** was coupled with triethyl phosphite at 150 °C in the presence of a catalytic amount of nickel bromide.¹³ The resulting vinylphosphonates **1** were obtained in good yields (Scheme 1, Table 1).¹⁴

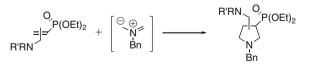
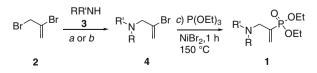
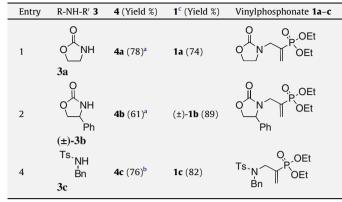



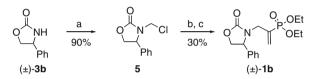
Figure 1. β - and γ -Aminopyrrolidinephosphonates.

Scheme 1. Synthesis of β-aminovinylphosphonates: see Table 1.



^{*} Corresponding author. Tel.: +33 1 6915 3239; fax: +33 1 6915 6278. *E-mail address:* antfadel@icmo.u-psud.fr (A. Fadel).

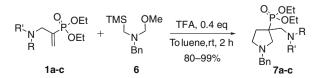
^{0040-4039/\$ -} see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.10.087


Table 1
Formation of vinylphosphonates 1a-c produced via Scheme 1

^a Reaction conditions: NaH, DMF, rt, 12 h.

^b Cs₂CO₃, CH₃CN, reflux, 2 h.

^c Solvent-free reaction of **4** with P(OEt)₃ 5 equiv, NiBr₂ 20 mol %, 150 °C, 1 h.

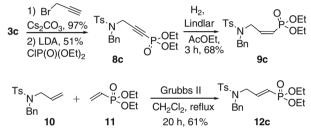

Scheme 2. Reagents and conditions: (a) $(CH_2O)_n$, TMSCI excess, reflux, 2 h; (b) NaH, $CH_2[P(O)(OEt)_2]_2$, THF, 0 °C; (c) NaH, $(CH_2O)_n$ 5 equiv, THF, rt.

It is noteworthy that the preparation of **1b** from oxazolidinone (\pm) -**3b** by chloromethylation [(CH₂O)_{*n*}/TMSCI] to afford oxazolidinone **5**, and subsequent alkylation [CH₂(P(O)(OEt)₂)₂] and vinylation [NaH/(CH₂O)_{*n*}]^{4d} gave only a poor yield of the vinylphosphonate (\pm) -**1b** (Scheme 2).

For this study, the 1,3-dipole derived from **6** (an expensive commercial product) was prepared from benzylamine by following a well-known procedure.⁹ With vinylphosphonates **1a–c** in hand, we submitted them to a 1,3-dipolar cycloaddition with amine **6** in the presence of trifluoroacetic acid (TFA) in toluene at room temperature (Scheme 3). Under these conditions the desired β -aminophosphonates **7a–c** were produced in excellent yields (Table 2).¹⁵

In order to expand the scope of our method, we decided to prepare the heterocyclic aminophosphonates via the cycloaddition of dipole derived from **6** with the *cis*- and *trans*- γ -aminophosphonates **9c** and **12c**, respectively. The preparation of *cis*-vinylphosphonate **9c** was achieved by alkylation of *N*-tosyl amine **6c** followed by phosphorylation to provide aminoalkynephosphonate **8c**. Subsequent Lindlar hydrogenation (5 wt % Pd on CaCO₃) of the latter afforded the *cis*- γ -aminophosphonate **9c** in good yield.¹⁶

trans-Aminovinylphosphonate **12c** was prepared selectively by cross-metathesis of allyl amide **10** and vinylphosphonate **11** using Grubbs II catalyst (5 mol %)¹⁷ in dichloromethane at reflux for 20 h (Scheme 4).¹⁸ Assignment of the stereochemistry of **9c** and **12c** was confirmed by the analysis of ³*J* coupling constants between H-3 and the phosphorus atom. The observed values (³*J*_{PHtrans} = 51.7 Hz)

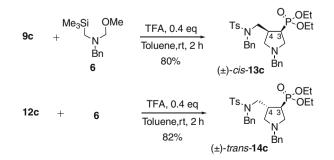


Scheme 3. β-Aminophosphonates by 1,3-dipolar cycloaddition.

Table 2
Formation of β-aminophosphonates 7a–c produced via Scheme 3

Entry	R-NH-R' 1	7 (Yield %)	β-Aminophosphonates 7a-c
1	1a	7a (80)	O. OEt P-OEt O N N O Bn
2	(±)-1b	(±)- 7b (99) ^a	O. OEt P-OEt O N N O Bn Ph
4	1c	7c (91)	O. OEt P-OEt N Bn Bn

^a Diastereoisomeric excess de = 8%.



Scheme 4. Synthesis of γ -aminovinylphosphonates.

for **9c** and $({}^{3}J_{PHcis} = 22.0 \text{ Hz})$ for **12c** are in agreement with the literature.^{4c,d}

The 1,3-dipolar cycloaddition of *cis*- and *trans*-aminovinylphosphonates **9c** and **12c** was achieved under the same conditions as noted above. Amine **6** and aminovinylphosphonates **9c** and **12c** were treated with TFA in toluene at room temperature to produce, with complete stereoselectivity, the heterocyclic γ aminophosphonates *cis*-**13c** and *trans*-**14c** in good yields (Scheme 5).¹⁹ The relative stereochemistry of *cis*-**13c** and *trans*-**14c** was supported by coupling constants in ¹³C NMR spectra between P and CH₂-C-4. The observed values (³*J*_{PCcis} = 7.2 Hz) for **13c** and (³*J*_{PCtrans} = 0 Hz) for **14c** were in agreement with our reported data in a related system.²⁰

Selective deprotection of *N*,*N*-dibenzylaminophosphonate **7c** by hydrogenolysis with a catalytic amount of 20% Pd(OH)₂/C in AcOH/ HCl under hydrogen (1 atm, 20 h), gave aminophosphonate **15c**²¹ in good yield (Scheme 6).²²

Scheme 5. Synthesis of cis- and trans- γ -aminophosphonates.

Download English Version:

https://daneshyari.com/en/article/5273362

Download Persian Version:

https://daneshyari.com/article/5273362

Daneshyari.com