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Abstract

Reversible jump Markov chain Monte Carlo (RJMCMC) is a recent method which makes it possible to construct reversible Markov
chain samplers that jump between parameter subspaces of different dimensionality. In this paper, we propose a new RJMCMC sampler
for multivariate Gaussian mixture identification and we apply it to color image segmentation. For this purpose, we consider a first order
Markov random field (MRF) model where the singleton energies derive from a multivariate Gaussian distribution and second order
potentials favor similar classes in neighboring pixels. The proposed algorithm finds the most likely number of classes, their associated
model parameters and generates a segmentation of the image by classifying the pixels into these classes. The estimation is done according
to the Maximum A Posteriori (MAP) criterion. The algorithm has been validated on a database of real images with human segmented
ground truth.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

MRF modeling and MCMC methods are successfully
used in different areas of image processing. In fact, the sim-
plest statistical model for an image consists of the probabil-
ities of pixel classes. The knowledge of the dependencies
between nearby pixels can be modeled by a MRF. Such
models are much more powerful [1,2], even if it is not easy
to determine the values of the parameters which specify a
MRF. If each pixel class is represented by a different model
then the observed image may be viewed as a sample from a
realization of an underlying label field. Unsupervised seg-
mentation can therefore be treated as an incomplete data

problem where the color values are observed, the label field
is missing and the associated class model parameters,
including the number of classes, need to be estimated. Such
problems are often solved using MCMC procedures.
Although the general theory and methodology of these

algorithms are fairly standard, they have their limitations
in case of problems with parameters of varying dimension.
Recently, a novel method, called reversible jump MCMC
(RJMCMC), has been proposed by Green [3]. This method
makes it possible to construct reversible Markov chain
samplers that jump between parameter subspaces of differ-
ent dimensionality. In this paper, we will develop a
RJMCMC sampler for identifying multi-variate Gaussian
mixtures. In particular, we will apply this technique to
solve the unsupervised color image segmentation problem
in a Markovian framework.

Due to the difficulty of estimating the number of pixel
classes (or clusters), unsupervised algorithms often assume
that this parameter is known a priori [4,5]. When the num-
ber of pixel classes is also being estimated, the unsupervised
segmentation problem may be treated as a model selection

problem over a combined model space. Basically, there
are two approaches in the literature. One of them is an
exhaustive search of the combined parameter space [6,7]:
segmentations and parameter estimates are obtained via
an iterative algorithm by alternately sampling the label
field based on the current estimates of the parameters.
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Then the maximum likelihood estimates of the parameter
values are computed using the current labeling. The result-
ing estimates are then applied to a model fitting criterion to
select the optimum number of classes. Another approach
consists of a two step approximation technique [1,8]: the
first step is a coarse segmentation of the image into the
most likely number of regions. Then the parameter values
are estimated from the resulting segmentation and the final
result is obtained via a supervised segmentation.

Our approach consists of building a Bayesian color
image model using a first order MRF. The observed image
is represented by a mixture of multivariate Gaussian distri-
butions while inter-pixel interaction favors similar labels at
neighboring sites. In a Bayesian framework [9], we are
interested in the posterior distribution of the unknowns
given the observed image. Herein, the unknowns comprise
the hidden label field configuration, the Gaussian mixture
parameters, the MRF hyperparameter, and the number
of mixture components (or classes). Then a RJMCMC
algorithm is used to sample from the whole posterior distri-
bution in order to obtain a MAP estimate via simulated
annealing [9]. Until now, RJMCMC has been applied to
univariate Gaussian mixture identification [10] and its
applications in different areas like inference in hidden Mar-
kov models [11], intensity-based image segmentation [12],
and computing medial axes of 2D shapes [13]. The novelty
of our approach is twofold: first, we extend the ideas in
[10,12] and propose a RJMCMC method for identifying
multi-variate Gaussian mixtures. Second, we apply it to
unsupervised color image segmentation. RJMCMC allows
us the direct sampling of the whole posterior distribution
defined over the combined model space thus reducing the
optimization process to a single simulated annealing run.
Another advantage is that no coarse segmentation neither
exhaustive search over a parameter subspace is required.
Although for clarity of presentation we will concentrate
on the case of three-variate Gaussians, it is straightforward
to extend the equations to higher dimensions.

2. Color image segmentation model

The model assumes that the real world scene consists of
a set of regions whose observed color changes slowly, but
across the boundary between them, they change abruptly.
What we want to infer is a labeling x consisting of a sim-
plified, abstract version of the input image: regions has a
constant value (called a label in our context) and the dis-
continuities between them form a curve – the contour. Such
a labeling x specifies a segmentation. Taking the probabilis-
tic approach, one usually wants to come up with a proba-

bility measure on the set X of all possible segmentations
of the input image and then select the one with the highest
probability. Note that X is finite, although huge. A widely
accepted standard, also motivated by the human visual sys-
tem [14,15], is to construct this probability measure in a
Bayesian framework [16–18]. We will assume that we have
a set of observed (Y) and hidden (X) random variables. In

our context, the observation F 2 Y represents the color val-
ues used for partitioning the image, and the hidden entity
x 2 X represents the segmentation itself. Hence the
observed image F ¼ f~f sjs 2S; 8i : 0 <~f i

s < 1g consists
of three spectral component values at each pixel s denoted
by the vector ~f s. Note that color components are normal-
ized. Furthermore, a segmentation x assigns a label xs

from the set of labels K = {1,2, . . . ,L} to each site s.
First, we have to quantify how well any occurrence of x

fits F. This is expressed by the probability distribution
PðFjxÞ – the imaging model. Second, we define a set of
properties that any segmentation x must posses regardless
the image data. These are described by P(x), the prior,
which tells us how well any occurrence x satisfies these
properties. For that purpose, xs is modeled as a discrete
random variable taking values in K. The set of these labels
x ¼ fxs; s 2Sg is a random field, called the label process.
Furthermore, the observed color features are supposed to
be a realization F from another random field, which is a
function of the label process x. Basically, the image process

F represents the manifestation of the underlying label pro-
cess. The multivariate Normal density is typically an
appropriate model for such classification problems where
the feature vectors~f s for a given class k are mildly corrupt-
ed versions of a single mean vector lk [19,20]. Applying
these ideas, the image process F can be formalized as fol-
lows: P ð~f sjxsÞ follows a three-variate Gaussian distribution
Nð~l;RÞ, each pixel class k 2 K = {1, 2, . . . ,L} is represent-
ed by its mean vector ~lk and covariance matrix Rk. As for
the label process x, a MRF model is adopted [21] over a
nearest neighborhood system. According to the Hammers-

ley–Clifford theorem [9], P(x) follows a Gibbs distribution:

PðxÞ ¼ 1

Z
expð�UðxÞÞ ¼ 1

Z
exp �

X
C2C

V CðxCÞ
 !

; ð1Þ

where U(x) is called an energy function, Z ¼P
x2X expð�UðxÞÞ is the normalizing constant (or partition

function) and VC denotes the clique potentials of cliques
C 2 C having the label configuration xC. The prior P(x)
will represent the simple fact that segmentations should
be locally homogeneous. Therefore we will define clique
potentials VC over pairs of neighboring pixels (doubletons)

such that similar classes in neighboring pixels are favored

V C ¼ b � dðxs;xrÞ ¼
þb if xs 6¼ xr;

�b otherwise;

�
ð2Þ

where b is a hyper-parameter controlling the interaction
strength. As b increases, regions become more homoge-
neous. The energy is proportional to the length of the re-
gion boundaries. Thus homogeneous segmentations will
get a higher probability, as expected.

Factoring the above distributions and applying the
Bayes theorem gives us the posterior distribution
PðxjFÞ / P ðFjxÞPðxÞ. Note that the constant factor
1=PðFÞ has been dropped as we are only interested in x̂

362 Z. Kato / Image and Vision Computing 26 (2008) 361–371



Download English Version:

https://daneshyari.com/en/article/527370

Download Persian Version:

https://daneshyari.com/article/527370

Daneshyari.com

https://daneshyari.com/en/article/527370
https://daneshyari.com/article/527370
https://daneshyari.com

