

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 2537-2540

Convenient synthesis of triarylmethanes and 9,10-diarylanthracenes by alkylation of arenes with aromatic aldehydes using acetyl bromide and ZnBr₂/SiO₂

Mitsuo Kodomari^{a,*}, Maki Nagamatsu^a, Megumi Akaike^a, Tadashi Aoyama^b

^a Department of Applied Chemistry, Shibaura Institute of Technology, Koto-ku, Tokyo 135-8548, Japan ^b College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308, Japan

Received 16 January 2008; revised 15 February 2008; accepted 21 February 2008 Available online 4 March 2008

Abstract

Reaction of electron-rich arenes with acetyl bromide and aldehydes in the presence of silica gel-supported zinc bromide was carried out in benzene to give selectively the corresponding triarylmethanes or 9,10-diarylanthracenes in high yields depending upon the ratio of an arene and an aldehyde. The mild conditions employed are especially noteworthy. © 2008 Elsevier Ltd. All rights reserved.

Keywords: Triarylmethane; Anthracene; Aldehyde; Silica gel-supported zinc chloride

The acid-catalyzed Friedel-Crafts alkylation of arenes with aromatic aldehydes has been known since 1886.¹ The reaction using Lewis acid such as AlCl₃ had not received much attention until recently because of the formation of many products such as triarylmethanes, triarylmethanol, diarylmethane, and anthracene derivatives.² However, the analogous reaction of aldehydes has been investigated extensively. Lewis acid-catalyzed reductive Friedel-Crafts reaction of arenes with aromatic aldehydes afforded exclusively the corresponding diarylmethanes. For instance, diarylmethanes formed selectively in the reaction using $CaCl_2$ ³, $Sc(OTf)_3/1$,3-propanediol,⁴ and $InCl_3/$ chloromethylsilane.⁵ Recently, it has been reported that the alkylation of arenes with aldehydes using catalytic AuCl₃/3AgOTf ⁶ or [Ir(COD)Cl₂/SnCl₄⁷ gives triarylmethanes selectively. $LnCl_3$ (Ln = Pr, Dy, Er, Sm. Yb) and $Yb(OTf)_3$ -catalyzed alkylation of PhR (R = H, Me) with AcCl-PhCHO also affords the corresponding triarylmethane.⁸ We found that silica gel-supported zinc bromide (ZnBr₂/SiO₂) catalyzed alkylation of electron-rich arenes with acetyl bromide-aromatic aldehydes gave the corresponding triarylmethanes in high yields under mild conditions. Triarylmethanes have attracted the attention of chemists because of the interesting properties associated with their derivatives.⁹ Although a number of methods are available for the synthesis of triarylmethanes, most of them are multistep process and/or require hash reaction conditions.¹⁰ We wish to report herein a convenient and practical method for the preparation of triarylmethanes and 9,10-diarylanthracenes by the reaction of electron-rich arenes with AcBr and aromatic aldehydes in the presence of ZnBr₂/SiO₂. The reaction of anisole with benzaldehyde was carried out in the presence of ZnBr₂/SiO₂ at room temperature, but no products were obtained and anisole was recovered. In contrast, the reaction with AcBr and benzaldehyde in the presence of ZnBr₂/SiO₂ under similar conditions afforded 4,4'-dimethoxytriphenylmethane 1 in high yield.

^{*} Corresponding author. Fax: +81 3 5859 8101.

E-mail address: kodomari@sic.shibaura-it.ac.jp (M. Kodomari).

^{0040-4039/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.02.117

Thus, to a mixture of anisole (4 equiv), benzaldehyde (1 equiv), and $ZnBr_2/SiO_2^{11}$ in benzene was added dropwise, with stirring, a solution of acetyl bromide in benzene. After the addition, the slurry was stirred for 1 h at room temperature, and 1 was obtained in 84% yield. Acetylanisole which is formed from Friedel–Crafts acylation of anisole with acetyl bromide was not detected. Toluene can also be used as a solvent, whereas in polar solvent such as THF and dioxane the yield is very low. We next explored the bisarylation of benzaldehyde with various arenes for the synthesis of triarylmethanes.¹² The results are shown in Table 1.

Electron-rich arenes such as anisole, 1,2-dimethoxybenzene (veratrole), 1,3,5-trimethoxybenzene, 2- and 4methoxytoluene, and 1-methoxynaphthalene gave the corresponding triarylmethane in high yields (entries 1–6).

Table 1

Reaction of various arenes with AcBr and benzaldehyde (PhCHO) leading to triarylmethanes^a

Entry	Arene	Temp (°C)/time (h)	Product	Yield ^b (%)
1	Anisole	rt/1	MeO 1 OMe	84
2	1,2-(MeO) ₂ -Benzene	rt/1	MeO MeO 2 MeO	94
3	1,3,5-(MeO) ₃ -Benzene	rt/0.25	MeO OMe MeO OMe	71
4	1-(MeO)-Naphthalene	rt/1	MeO Ph OMe	88
5	2-(MeO)-Toluene	rt/1	Me MeO 5 OMe	94
6	4-(MeO)-Toluene	rt/1	MeO Ph OMe Me 6 Me	90
7	1,2-Me ₂ -Benzene	50/3	Me Me 7 Me	73
8	1,3-Me ₂ -Benzene	50/3	Me Ph Me Me 8 Me	72
9	1,2,3-Me ₃ -Benzene	50/3	Me Ph Me Me Me 9 Me	78
10	1-Me-Naphthalene	50/3	Me Ph Me	97

^a Reaction conditions: arene (8 mmol), benzaldehyde (2 mmol), acetyl bromide (4 mmol), ZnBr₂/SiO₂ (0.67 g, 0.8 mmol of ZnBr₂ on SiO₂), benzene (15 ml).

^b Isolated yield.

Download English Version:

https://daneshyari.com/en/article/5273708

Download Persian Version:

https://daneshyari.com/article/5273708

Daneshyari.com