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a b s t r a c t

The synthesis of polyketide segments through the vinylogous Mukaiyama aldol reaction is reported. The
use of chiral oxazaborolidines allows using terminal substituted ketene acetals and provides access to
extended segments and two new chiral centers.

� 2009 Elsevier Ltd. All rights reserved.

The rapid and efficient assembly of polyketide segments is one
of the pivotal requirements for the construction of biologically ac-
tive compounds. In this context, the vinylogous extension of the
Mukaiyama aldol reaction is a strategic concept by which not only
larger segments can be constructed rapidly but also it avoids
extensive functional group manipulations or protecting group
shuffling. This set the background for groundbreaking contribu-
tions of various research groups.1 In order to meet the stereochem-
ical requirements of modern organic chemistry different
approaches to provide enantioselective vinylogous aldol reaction
have been put forward and in particular enolates or ketene acetals
were successfully transformed. Despite the enormous success of
such reaction the lack of substitution at the terminal position pre-
vented the general applicability of this concept. The seminal con-
tributions by Denmark2 and co-workers allowed using terminal
substituted ketene acetals in Mukaiyama aldol reactions with aro-
matic and unsaturated aldehydes leaving aliphatic aldehydes as an
unmet challenge. On the other hand a methyl-substituted ketene
acetal would allow for the rapid and efficient construction of poly-
ketide segments found in natural products such as virginiamycin
(1),3 mycotoxin (2)4 or roflamycoin (3)5 (Scheme 1). In connection
with our ongoing program dealing with the synthesis of complex
natural products6 we focused on different Lewis acids for the acti-

vation of aldehydes.7 In this context chiral oxazaborolidinones
proved to be superior to other boron centered catalysts and
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Scheme 1. Antibiotics virginiamycin, mycotoxin A, roflamycoin.
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provided access to highly enantioselective vinylogous Mukaiyama
aldol reactions.8

In our search for Lewis acids that would allow for the enantio-
selective addition of substituted ketene acetals, the above-men-
tioned oxazaborolidinones failed to provide satisfactory
selectivities for both the 3,4-E (4) and the 3,4-Z (5) configured ke-
tene acetals (Scheme 2, Table 1).

In order to extend the diversity of the catalysts employed we
examined Lewis acids that proved to be successful in other vinylo-

gous aldol reactions. Among these catalysts are the titanium-based
complexes 6 and 7 developed by Carreira,9 Evan’s copper pybox
complex 8,10 Yamamoto’s11 acyloxyboranes 9–11 for which Sato
et al.12 could show that they provide significantly higher selectiv-
ities compared to oxazaborolidinones as well as the Keck catalyst
1213 which was successfully employed in vinylogous Mukaiyama
aldol reaction of terminally unsubstituted ketene acetals by Pater-
son et al. (Fig. 1).14 Despite their structural diversity, none of these
catalysts exceeded 76% enantiomeric excess in reactions with 4-
methylated silyl ketene acetals.

We therefore changed our focus to the phenylalanine and valine
derived oxazaborolidines that were employed either with no addi-
tive or with additional Lewis acid (SnCl4) or Brønsted acid (TfOH),
respectively.15 Even though all catalysts provided acceptable yields
in the order of 50% and with diastereomeric excess greater than
95%, the ee values never exceeded 80% (Fig. 2).

Finally, the contributions of Boeckman et al.16 prompted us to
examine proline-derived oxazaborolidines. In the first attempt
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Scheme 2. Vinylogous Mukaiyama aldol reaction using terminal substituted ketene acetals and N-Ts-tryptophan-based oxazaborolidinone.
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Figure 1. Lewis acids used in vinylogous Mukaiyama aldol reactions with terminal
substituted silyl ketene acetals.

Table 1
Vinylogous Mukaiyama aldol reaction using N-Ts-tryptophan-based
oxazaborolidinone

Entry Ketene acetal Yield (%) de (%) ee (%)

1 4 24 58 24
2 5 31 77 52
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Figure 2. Oxazaborolidines (OXBs) used in vinylogous Mukaiyama aldol reactions.
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