ELSEVIER Contents lists available at ScienceDirect # **Tetrahedron Letters** journal homepage: www.elsevier.com/locate/tetlet # The Morita-Baylis-Hillman reaction in aqueous-organic solvent system Rodrigo O. M. A. de Souza a,*, Vera L. P. Pereira , Pierre M. Esteves b, Mario L. A. A. Vasconcellos c - a Núcleo de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Bloco H, CCS, Ilha do Fundão, Rio de Janeiro, RJ 21941-590, Brazil - ^b Instituto de Química, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Bloco A, Lab-622, Brazil - ^c Departamento de Química, Universidade Federal da Paraíba, Campus I, João Pessoa, PB 58059-900, Brazil #### ARTICLE INFO Article history: Received 15 May 2008 Revised 22 July 2008 Accepted 24 July 2008 Available online 29 July 2008 Keywords: Morita-Baylis-Hillman reaction DABCO Catalysis Water and biological active adducts #### ABSTRACT We have found that water and organic solvents mixed at different proportions can give good to excellent yields and short reaction times for the Morita–Baylis–Hillman reaction. The present Letter details our findings in the Morita–Baylis–Hillman reaction between several aromatic aldehydes and methyl acrylate or acrylonitrile. The selection of the catalyst was also evaluated and DABCO affored the best results when compared to DBU, DMAP, HMT, Imidazole and Triethylamine. © 2008 Elsevier Ltd. All rights reserved. ### 1. Introduction The Morita–Baylis–Hillman^{1–4} reaction is an important way for C–C bond formation. It involves the coupling of alkenes containing electron-withdrawing groups (EWG) with aldehydes, ketones or imines, among others. Tertiary amines are used as nucleophilic catalysts where 1,4-diazabicyclo[2.2.2]octane (DABCO) is the most widely used (Scheme 1). ^{5,6} The Morita-Baylis-Hillman adducts have been extensively used as intermediates in organic synthesis for a variety of applications, many of which have biologically activity. ⁷⁻¹⁴ Due to their synthetic potential, several protocols have been proposed to accelerate this reaction, such as the use of microwaves, ¹⁵ ultrasound, ¹⁶ addition of salts, ¹⁷ high pressure, ¹⁸ protic media ¹⁹ and ionic liquids. ²⁰ In our continuous search for efficient methodologies for the Morita–Baylis–Hillman reaction, 11–14,20,21 we have found that aqueous organic solvents give good yields and short reaction times. $$R_1$$ + EWG NR_3 R_2 EWG R_1 R_2 EWG R_1 R_2 R_3 R_4 R_5 R_6 R_7 R_8 R_8 R_9 R Scheme 1. The Morita-Baylis-Hillman reaction. This present Letter details our findings in the Morita-baylis-Hill-man reaction between several aldehydes and methyl acrylate or acrylonitrile. First, the reaction between *p*-nitrobenzaldehyde (**1a**), acrylonitrile (**2a**) and DABCO was examined in polar protic solvents (Table 1, entries 1–3), where the best result was obtained in *tert*-butanol (Table 1, entry 3). Following this initial study, we investigated different proportions of a *tert*-butanol/water system (Table 1, entries 4–11), as the presence of water is known to accelerate the Morita–Baylis–Hillman.^{22,23} The effect of DABCO concentration was also evaluated. The result obtained in entry 7 (Table 1) shows a great improvement on reaction time for the reaction carried in *tert*-butanol/water (60:40) in comparison with entry 3 (Table 1). This study also shows the dependence of reaction time on DABCO concentration (Table 1, entries 7–9). With an increased amount of DABCO, the reaction time can be greatly reduced and furnished on excellent yield of product. Given the interesting results, we have explored the use of other nucleophilic catalyst for the Morita-Baylis-Hillman reaction on *tert*-butanol/water system (Table 2, entries 1–6). In addition, the use of a less reactive Michael acceptor, methyl acrylate (**2b**) and less reactive electrophile, benzaldehyde (**1b**) and anisaldehyde (**1c**) were evaluated. The results are summarized in Table 2 (entries 7–11). The use of DABCO (Table 2, entry 1) gave better results than the use of other tertiary amines such as triethylamine, imidazole, DMAP, HMT and DBU (Table 2, entries 2–6). These results lead us to use DABCO in the reactions between different Michael acceptors and aromatic aldehydes increasing the scope of this reaction ^{*} Corresponding author. Tel.: +55 2125627248; fax: +55 2125627559. E-mail address: rodrigosouza@iq.ufrj.br (R. O. M. A. de Souza). **Table 1** Reaction between p-nitrobenzaldehyde (1a), acrylonitrile (2a) and DABCO (X mol %) in different polar protic solvents and water systems | Entry | Solvent ^a | DABCO (mol %) | Time | Yield ^b (%) | |-------|-------------------------|---------------|--------|------------------------| | 1 | MeOH | 100 | 24 h | 55 | | 2 | i-PrOH | 100 | 24 h | 67 | | 3 | tert-BuOH | 100 | 6 h | 81 | | 4 | tert-BuOH/water (90:10) | 100 | 1 h | 94 | | 5 | tert-BuOH/water (90:10) | 50 | 3 h | 82 | | 6 | tert-BuOH/water (90:10) | 10 | 4 h | 77 | | 7 | tert-BuOH/water (60:40) | 100 | 20 min | >99 | | 8 | tert-BuOH/water (60:40) | 50 | 2 h | >99 | | 9 | tert-BuOH/water (60:40) | 10 | 12 h | 85 | | 10 | tert-BuOH/water (50:50) | 100 | 2 h | 87 | | 11 | tert-BuOH/water (40:60) | 100 | 6 h | 62 | Five millilitres of solvent were used. Table 2 Reaction between aromatic aldehydes (1a-h), Michael acceptors (2a-b) and catalyst (100 mol %) in *tert*-butanol/water (60:40) system | Entry | R | EWG | Catalyst | Time | Yield ^a (%) | |-------|-------------------------------|---------------|---------------|--------|------------------------| | 1 | NO ₂ (1a) | CN (2a) | DABCO | 20 min | 3 , >99 | | 2 | NO_2 (1a) | CN (2a) | Triethylamine | 3 h | 3 , >99 | | 3 | NO_2 (1a) | CN (2a) | Imidazole | 24 h | 3 , 22 | | 4 | NO_2 (1a) | CN (2a) | DMAP | 24 h | 3 , 51 | | 5 | NO_2 (1a) | CN (2a) | HMT | 24 h | 3 , 60 | | 6 | NO_2 (1a) | CN (2a) | DBU | 24 h | 3 , 37 | | 7 | NO_2 (1a) | $CO_2Me(2b)$ | DABCO | 9 h | 4 , 92 | | 8 | H (1b) | CN (2a) | DABCO | 24 h | 5 , 92 | | 9 | H (1b) | CO_2Me (2b) | DABCO | 24 h | 6 , 79 | | 10 | OMe (1c) | CN (2a) | DABCO | 24 h | 7 , 76 | | 11 | OMe (1c) | $CO_2Me(2b)$ | DABCO | 48 h | 8 , 55 | | 12 | F (1f) | CN (2a) | DABCO | 48 h | 11 , 66 | | 13 | F (1f) | $CO_2Me(2b)$ | DABCO | 48 h | 12 , 57 | | 14 | OH (1g) | CN (2a) | DABCO | 48 h | 13 , 70 | | 15 | OH (1g) | CO_2Me (2b) | DABCO | 48 h | 14 , 61 | | 16 | CF ₃ (1h) | CN (2a) | DABCO | 48 h | 15 , 78 | a Isolated yields. methodology (Table 2, entries 7–16). Table 2 shows that less reactive aromatic aldehydes can give moderated to good yields (entries 8–11) in shortened reaction times. The reaction time observed for the reaction between p-nitrobenzaldehyde ($\mathbf{1a}$) and methyl acrylate ($\mathbf{2b}$) under DABCO catalysis in the tert-butanol/water (60:40) system (Table 2, entry 7) was much longer to that observed for the reaction between p-nitrobenzaldehyde ($\mathbf{1a}$) and acrylonitrile ($\mathbf{2a}$) under the same conditions (Table 2, entry 1). These results prompted us to search for alternative reaction media for the reaction between p-nitrobenzaldehyde ($\mathbf{1a}$) and methyl acrylate ($\mathbf{2b}$) (Table 3). In Table 3, it is shown that solvents of higher dielectric constants afforded better yields and shorter reaction times (entries 3, 6 and 7). DMSO was chosen solvent to investigate the effect of DABCO concentration on the reaction time, for the reaction of **Table 3**Reaction between *p*-nitrobenzaldehyde (**1a**) and methyl acrylate (**2b**) under DABCO catalysis (X mol %) | Entry | Solvent ^a | DABCO (mol %) | Time | Yield ^b (%) | |-------|---------------------------------|---------------|------------|------------------------| | 1 | MeOH | 100 | 24 h | 66 | | 2 | THF | 100 | 48 h | 63 | | 3 | DMSO | 100 | 5 h 30 min | 96 | | 4 | DMSO | 50 | 9 h | 85 | | 5 | DMSO | 10 | 15 h | 85 | | 6 | DMF | 100 | 5 h 30 min | 86 | | 7 | MeCN | 100 | 5 h 30 min | 90 | | 8 | CH ₂ Cl ₂ | 100 | 24 h | 15 | ^a Five millilitres of solvent were used. *p*-nitrobenzaldehyde (**1a**) and methyl acrylate (**2b**). Once again, 100 mol % of DABCO results in a 60% reduction of the reaction time and gives better yields (Table 3, entry 3). Given the beneficial effect of water, the following aqueous systems were evaluated: DMSO/water, DMF/water and MeCN/water for the reaction between aromatic aldehydes (**1a**–**e**) and methyl acrylate (**2b**), under DABCO catalysis (100 mol %) (Table 4). Table 4 shows that DMSO/water, DMF/water and MeCN/water systems promote a small improvement on reaction time for more reactive aldehydes (Table 4, entries 1–3). However, the DMSO/water system showed a large reduction in reaction time for less reactive aldehydes that also gave better yields of products (Table 4, entries 4–7). Different proportions of the DMSO/water, DMF/water and MeCN/water systems were also evaluated in the reaction of less activated aldehydes, and the results are summarized in Table 5. Table 5 shows that different proportions of DMSO/water, DMF/water and MeCN/water systems in the reaction between piperonal (1d) and methyl acrylate (2b) under DABCO catalysis do not lead to improvement on reaction time and yield when compared with entry 6, Table 4. The role of water in the Morita–Baylis–Hillman mechanism can be rationalized as suggested by Aggarwal and co-workers²⁴ in their results on the theoretical calculations of the Morita–Baylis–Hillman mechanism. They predict that in the absence of protic solvents deprotonation of the α -position is the rate-determining step and occurs through a cyclic transition state, with proton **Table 4**Reaction between aromatic aldehydes (**1a–e**), methyl acrylate (**2b**) and DABCO in solvent/water (60:40) system | Entry | Aldehyde | Solvent ^a | Time | Yield ^b (%) | |-------|---|----------------------|------------|------------------------| | 1 | p-Nitrobenzaldehyde (1a) | DMSO/water | 2 h 30 min | 4 , 90 | | 2 | <i>p</i> -Nitrobenzaldehyde (1a) | DMF/water | 3 h 30 min | 4 , 91 | | 3 | <i>p</i> -Nitrobenzaldehyde (1a) | MeCN/water | 5 h | 4 , 86 | | 4 | Benzaldehyde (1b) | DMSO/water | 3 h 30 min | 6 , 95 | | 5 | Anisaldehyde (1c) | DMSO/water | 8 h | 8 , 66 | | 6 | Piperonal (1d) | DMSO/water | 15 h | 9 , 85 | | 7 | Naftaldehyde (1e) | DMSO/water | 12 h | 10 , 95 | ^a Five millilitres of solvent were used. b Isolated yields. b Isolated yields. b Isolated yields. ## Download English Version: # https://daneshyari.com/en/article/5274166 Download Persian Version: https://daneshyari.com/article/5274166 Daneshyari.com