

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 1305-1309

Chemo- and diastereoselective Bi(OTf)₃-catalyzed benzylation of silyl nucleophiles

Philipp Rubenbauer, Thorsten Bach*

Lehrstuhl für Organische Chemie I, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany

Received 6 November 2007; revised 11 December 2007; accepted 19 December 2007

Abstract

The direct alkylation of silyl enol ethers with *para*-methoxybenzylic alcohols or their corresponding acetates was efficiently catalyzed by Bi(OTf)₃ in CH₃NO₂ as the solvent. The reaction provided the α -benzylated carbonyl compounds in high yields after short reaction times using 1–2.5 mol% of the catalyst. Benzylic acetates other than *para*-methoxybenzylic acetates also underwent the reaction. High facial diastereoselectivities were observed with acetates derived from chiral α -branched *para*-methoxybenzylic alcohols. In addition, a catalytic reduction with Et₃SiH as the reducing agent is reported.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Bi catalysis; Benzylic alcohols; Silyl enol ether; Facial diastereoselectivity; Triethylsilane

The counterpart of the conventional enolate alkylation under basic conditions is the acid-promoted alkylation of silyl enol ethers.^{1,2} The latter reaction is most frequently applied to substrates which allow for a facile S_N1-type substitution. Important examples include *tert*-alkylation³ and benzylation⁴ reactions, which have been extensively studied in recent years.² Our interest in the benzylation and more specifically in the methoxybenzylation of silvl enol ethers stems from previous work, in which we studied the Friedel-Crafts alkylation of various arenes with chiral α branched para-methoxybenzylic alcohols.⁵ We envisioned that silvl enol ethers could serve as possible nucleophiles for related reactions under catalytic reaction conditions. It turned out that bismuth tris(trifluoromethanesulfonate) $(Bi(OTf)_3)$ is a very efficient catalyst⁶ for these reactions and we report in this Letter on our preliminary results in this area.

The suitability of $Bi(OTf)_3$ to activate benzylated alcohols for nucleophilic attack has been demonstrated earlier

E-mail address: thorsten.bach@ch.tum.de (T. Bach).

by Rueping et al.^{7,8} Given the high temperatures (55-100 °C) required in these benzylation reactions, it was a pleasant surprise to note that the methoxybenzylation of silyl enol ethers can be achieved at ambient temperature in nitromethane as the solvent (Scheme 1, Table 1).

Sterically more congested *para*-methoxyphenyl-1-ethanol (1) was used in a first set of experiments as the alkylating agent (instead of the parent methoxybenzylalcohol) to mimic the situation in α -branched *para*-methoxybenzylic alcohols (vide infra). Silyl enol ethers 2 were prepared according to known procedures.⁹ Reactions proceeded smoothly and provided the desired products¹⁰ in high yields (73–96%, entries 1–8). The only exception was observed with the α, α' -disubstituted silyl ketene acetal 2i (entry 9), which gave only a mediocre result. All reactions

Scheme 1.

^{*} Corresponding author. Tel.: +49 (0)89 289 13330; fax: +49 (0)89 289 13315.

^{0040-4039/\$ -} see front matter \odot 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.12.092

Table 1	
Reaction of alcohol 1 with different silyl enol ethers 2 (cf. Scheme 1)	1

Entry	Enol ether	Product	Time (h)	Yield ^a (%)
1	OSiMe ₃ Ph 2a	MeO 3a	4	89 ^b
2	OSiMe ₃ Ph 2b	MeO 3b ¹¹	3	76
3	OSiMe₃ ↓/ _{tBu} 2c	MeO 3c	5	79
4	OSiMe₃ S′Bu 2d	MeO 3d	4	77
5	OSiMe ₃ OMe 2e	MeO 3e	4	73
6	OSiMe ₃	MeO 3f	2	91°
7	OSiMe ₃	MeO 3g	1	96°
8	OSiMe ₃	MeO 3h	1	96°
9	MeO_OSiMe ₃	MeO 3i	0.5	48

^b Diasteromeric ratio (¹H NMR) dr = 69:31.

^c Diasteromeric ratio (¹H NMR) dr = 50:50.

were run at room temperature with the initially clear solution becoming slightly turbid after ca. 15 min.

It was shown in a second set of experiments (Scheme 2) with silyl enol ether **2f** as the nucleophile that other methoxybenzylic alcohols can be equally well employed as electrophile precursors. The parent alcohol **4** yielded the substitution product ketone 5^{12} and *ortho*-methoxyphenyl-1-ethanol (**6**) gave with the same silyl nucleophile product **7** (Scheme 2). Yields were high but a larger amount of Bi(OTf)₃ had to be employed for full conversion and reaction times were required to be longer.

Download English Version:

https://daneshyari.com/en/article/5274213

Download Persian Version:

https://daneshyari.com/article/5274213

Daneshyari.com