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Abstract

Triangulation consists in finding a 3D point reprojecting the best as possible onto corresponding image points. It is classical to min-
imize the reprojection error, which, in the pinhole camera model case, is nonlinear in the 3D point coordinates. We study the triangu-
lation of points lying on a 3D line, which is a typical problem for Structure-From-Motion in man-made environments. We show that the
reprojection error can be minimized by finding the real roots of a polynomial in a single variable, which degree depends on the number of
images. We use a set of transformations in 3D and in the images to make the degree of this polynomial as low as possible, and derive a
practical reconstruction algorithm. Experimental comparisons with an algebraic approximation algorithm and minimization of the
reprojection error using Gauss–Newton are reported for simulated and real data. Our algorithm finds the optimal solution with high
accuracy in all cases, showing that the polynomial equation is very stable. It only computes the roots corresponding to feasible points,
and can thus deal with a very large number of views – triangulation from hundreds of views is performed in a few seconds. Reconstruc-
tion accuracy is shown to be greatly improved compared to standard triangulation methods that do not take the line constraint into
account.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Triangulation is one of the main building blocks of
Structure-From-Motion algorithms. Given image feature
correspondences and camera matrices, it consists in finding
the position of the underlying 3D feature, by minimizing
some error criterion. This criterion is often chosen as the
reprojection error – the Maximum Likelihood criterion
for a Gaussian, centered and i.i.d. noise model on the
image point positions – though other criteria are possible
[5,9,10].

Traditionally, triangulation is carried out by some sub-
optimal procedure and is then refined by local optimiza-
tion, see e.g. [7]. A drawback of this is that convergence
to the optimal solution is not guaranteed. Optimal proce-
dures for triangulating points from two and three views
were proposed in [6,13].

We address the problem of triangulating points lying on
a line, that is, given image point correspondences, camera
matrices and a 3D line, finding the 3D point lying on the
3D line, such that the reprojection error is minimized.

Our main contribution is to show that the problem can
be solved by computing the real roots of a degree-(3n � 2)
polynomial, where n is the number of views. Extensive
experiments on simulated data show that the polynomial
is very well balanced since large number of views and large
level of noise are handled. The method is valid whatever
the calibration level of the cameras is – projective, affine,
metric or Euclidean.

One may argue that triangulating points on a line only
has a theoretical interest since in practice, triangulating a
line from multiple views is done by minimizing the repro-
jection error over its supporting points which 3D positions
are hence reconstructed along with the 3D line. Indeed,
most work consider the case where the supporting points
do not match across the images, see e.g. [3]. When one iden-
tifies correspondences of supporting points accross the
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images, it is fruitful to incorporate these constraints into
the bundle adjustment, as is demonstrated by our experi-
ments. This is typically the case in man-made environ-
ments, where one identifies, e.g. matching corners at the
meet of planar facades or around windows. Bartoli et al.
[2] dubbed Pencil-of-Points or ‘POP’ this type of features.
In order to find an initial 3D reconstruction, a natural
way is to compute the 3D line by some means (e.g. by
ignoring the matching constraints of the supporting points,
from 3D primitives such as the intersection of two planes,
or from a registered wireframe CAD model) and then to tri-
angulate the supporting point correspondences using point
on line triangulation. The result can then be plugged into a
bundle adjustment incorporating the constraints.

We review some related work in Section 2. Our triangu-
lation method is derived in Section 3. A linear least squares
method minimizing an algebraic distance is provided in
Section 4. Gauss–Newton refinement is summarized in
Section 5. Experimental results are reported in Section 6
and our conclusions in Section 7.

Notation. Vectors are written using bold fonts, e.g. q,
and matrices using sans-serif fonts, e.g. P. Almost every-
thing is homogeneous, i.e. defined up to scale. Equality
up to scale is denoted �. The inhomogenous part of a vec-
tor is denoted using a bar, e.g. qT � ð�qT 1Þ where T is trans-
position. Index i = 1, . . . ,n, and sometime j are used for the
images. The point in the ith image is qi. Its elements are
qT

i � ðqi;1 qi;2 1Þ. The 3D line joining points M and N is
denoted (M,N). The L2-norm of a vector is denoted as in
ixi2 = xTx. The Euclidean distance measure de is defined by
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2. Related work

Optimal procedures for triangulating points in 3D
space, and points lying on a plane were previously studied,
as summarized in Table 1. Hartley and Sturm [6] showed
that triangulating points in 3D space from two views, in
other words finding a pair of points satisfying the epipolar
geometry and lying as close as possible to the measured
points, can be solved by finding the real roots of a
degree-6 polynomial. The optimal solution is then selected
by straightforward evaluation of the reprojection error.
Stewénius et al. [13] extended the method to three views.
The optimal solution is one of the real roots of a system
of 3 degree-6 polynomials in the three coordinates of the
point. Chum et al. [4] show that triangulating points lying
on a plane, in other words finding a pair of points satisfy-
ing an homography and lying as close as possible to the
measured points, can be solved by finding the real roots
of a degree-8 polynomial.

Error functions different from the reprojection error
were considered in the literature. The directional error in
two views is proposed in [10], along with a triangulation

method for calibrated cameras. The L1-norm is considered
in [5,9], instead of the usual L2-norm. A triangulation
method for two views is given in [9], while it is shown in
[5] that the n-view case can be cast as a convex optimization
problem Table 2.

3. Minimizing the reprojection error

We derive our optimal triangulation algorithm for point
on line, dubbed ‘POLY’.

3.1. Problem statement and parameterization

We want to compute a 3D point Q, lying on a 3D line
(M,N), represented by two 3D points M and N. The
(3 · 4) perspective camera matrices are denoted Pi with
i = 1, . . . ,n the image index. The problem is to find the
point Q̂ such that

Q̂ � arg min
Q2ðM;NÞ

C2
nðQÞ;

where Cn is the n-view reprojection error

C2
nðQÞ ¼

Xn

i¼1

d2
eðqi;PiQÞ: ð2Þ

We parameterize the point Q 2 (M,N) using a single
parameter k 2 R as

Q � kMþ ð1� kÞN � kðM�NÞ þN: ð3Þ

Introducing this parameterization into the reprojection
error (2) yields

C2
nðkÞ ¼

Xn

i¼1

d2
eðqi;PiðkðM�NÞ þNÞÞ:

Defining bi = Pi(M � N) and di = PiN, we get

C2
nðkÞ ¼

Xn

i¼1

d2
eðqi; kbi þ diÞ: ð4Þ

Table 1
Different types of triangulation and methods minimizing the L2-norm
reprojection error

Type of
triangulation

Number of
views

Polynomial system Reference

Number Degree Variables

Point in 3D
space

2 1 6 1 [6]
3 3 6/6/6 3 [13]

Point on plane 2 1 8 1 [4]

Point on line 1 1 1 1 This
paper

2 1 4 1
3 1 7 1
4 1 10 1
n 1 3n � 2 1

The number of polynomials to be solved, their degrees and the number of
variables is given in the column ‘Polynomial system’.
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