

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 543-547

Traceless sulfone linker cleavage triggered by ozonolysis: solid-phase synthesis of diverse α-β-unsaturated carbonyl compounds

Yi-Fan Chang, Yi-Rui Jiang and Wei-Chieh Cheng*

The Genomics Research Center, Academia Sinica, No. 128, Academia Road Sec. 2, Nankang District, Taipei 11529, Taiwan

Received 28 September 2007; revised 8 November 2007; accepted 13 November 2007 Available online 17 November 2007

Abstract—The highly efficient and convenient protocol to prepare diverse α,β -unsaturated aldehydes, ketones, and acids via the parallel solid-phase synthesis is developed. The key sulfone linker cleavage strategy is performed by ozonolysis to generate a carbonyl moiety followed by base-mediated polymer-bound sulfinate elimination to release our desired molecules from the resin. All α,β -unsaturated carbonyl compounds are prepared in good purities and yields without further purification. © 2007 Published by Elsevier Ltd.

Sulfinate-functionalized resins have been efficiently prepared and utilized in solid-phase organic synthesis (SPOS)¹ and the resulting sulfone linker has been found to be both a robust and a versatile linker.² In this regard, one of our goals is to develop sulfone linkers for SPOS and to explore sulfone-based chemical transformations and cleavage strategies. Among various sulfone linker cleavage strategies,^{2c,d,3} the most convenient way is to generate an α , β -unsaturated carbonyl moiety spontaneously released from the resin via the oxidation–elimination procedure. Previous reports from Kurth and co-workers⁴ and Lam and co-workers⁵ have detailed the use of a sulfinate-functionalized resin as the starting point for this strategy.

Small molecules containing α , β -unsaturated carbonyl groups are popular in nature⁶ and show versatile biological activities such as antitumor, antiinflammatory, and antimalarial properties.⁷ In addition, they are key intermediates⁸ of various biologically important compounds such as flavanones,⁹ pyrroles,¹⁰ and pyrimidines.¹¹

Previous reports showed a straightforward method for the solid-phase synthesis of α,β -unsaturated ketones employing the sulfone as a linker via sulfone mono-

alkylation with epoxides as a key step.^{4a,5} However, to extend this method to more diverse α,β -unsaturated ketones, commercially available epoxides are limited. In addition, this protocol is not suitable for the preparation of α,β -unsaturated aldehydes and acids, which are both prevalent in nature and useful as building blocks for further transformations.^{6,12} To circumvent these limitations, new synthetic methods and cleavage strategies are needed. Based on our preliminary study, ozonolysis has been utilized in SPOS¹³ but no cleavage conditions triggered by ozonolysis have been reported. Herein, we report sulfone-based chemistry for the synthesis of diverse α,β -unsaturated carbonyl compounds including aldehydes, ketones, and acids via SPOS as well as a new traceless ozonolysis-elimination cleavage strategy to release the desired products from the solid-support (Fig. 1).

Figure 1. α,β -Unsaturated carbonyl compounds from polymer-bound benzenesulfinate 1.

Keywords: Solid-phase organic synthesis; Sulfone linker; Ozonolysis; α - β -Unsaturated carbonyl compounds.

^{*} Corresponding author. Tel./fax: +886 2 2789 9931; e-mail: wcheng@ gate.sinica.edu.tw

^{0040-4039/\$ -} see front matter @ 2007 Published by Elsevier Ltd. doi:10.1016/j.tetlet.2007.11.064

As part of an investigation of the feasibility of ozonolysis–elimination cleavage strategy in solid-phase sulfone linker chemistry, we initially set out to develop a procedure to prepare α,β -unsaturated aldehyde via a four-step process consisting of (i) sulfinate S-alkylation with alkyl halide; (ii) sulfone monoalkylation with allyl halide; (iii) ozonolysis, and (iv) polymer-bound benzenesulfinate elimination with release of the desired product from the resin. Once the cleavage condition has been established, various highly diverse α,β -unsaturated acids and ketones can also be prepared following this similar protocol.

Preliminary solution-phase studies were undertaken to survey the requisite reaction conditions and establish modifications needed for SPOS. To begin our investigation, compound 4 was prepared from sodium benzenesulfinate in two steps [S-alkylation with benzyl bromide and sulfone α -monoalkylation with allyl bromide by using dimsyl anion (2 equiv) as the base] in an overall yield of 79%.¹⁴ Subsequent ozonolysis¹⁵ of 4 in CH_2Cl_2 at -78 °C generated the carbonyl moiety in 5 (75%). To our delight, under these reaction conditions no β-elimination was observed. Finally our desired product, cinnamaldehyde (6), was obtained smoothly under basic conditions (Et₃N/CH₂Cl₂) via β -elimination of sulfinate in 95% yield (Scheme 1). The newly formed double bond was in the *E*-form, as assigned from the ${}^{1}H$ NMR coupling constant (15.9 Hz) between the two of olefinic protons. The successful solution-phase transfor-

Scheme 1. The model study of solution-phase synthesis.

Table 1. A model study for optimization of solid-phase ozonolysis/elimination

Scheme 2. The model study of solid-phase synthesis.

mations encouraged us to explore this protocol on solidphase.

Our attention was next directed at development of a solid-phase protocol (Scheme 2) and the work began with step i-the S-alkylation of the sulfinate moiety of resin1¹⁶ (sulfinate loading = 0.8 mmol/g) with benzyl bromide. Monoalkylation of resin 7, prepared by treatment with dimsyl anion (3-5 equiv) as the base at room temperature followed by addition of allyl bromide gave resin 8 in step ii. While step i was amenable to FTIR monitoring (e.g., disappearance of sulfinate absorption at 1028 cm⁻¹; appearance of sulfone absorption at ~1320 and ~1130 cm⁻¹), it was not possible to monitor the next transformation (step ii) since this reaction exhibited no reliably diagnostic absorption peaks in the single bead FTIR spectrum. Subsequent ozonolysis of resin 8 in step iii was successfully carried out at -78 °C to deliver the corresponding resin 9 bearing a carbonyl group, which was readily monitored by FTIR $(\sim 1650 \text{ cm}^{-1})$. However, the prolonged reaction time in step iii did not enhance the carbonyl absorption peak in the FTIR spectrum but reduced the overall yield of 6 from 89% to 70%. Perhaps, partial decomposition of resin 9 resulted from the prolonged reaction time of ozonolysis. On the other hand, the inconvenience of low temperature (-78 °C) prompted us to further

	resin 8 <u>ozonolys</u> <u>step iii</u>	$\stackrel{\text{is}}{\longrightarrow} \text{ resin 9} \xrightarrow{\beta-\text{elimination}} 6$ $\boxed{\text{step iv}}$	
Entry	Step iii solvent/temp/time	Step iv base/solvent/temp/time	Overall yield ^a (%)
1	CH ₂ Cl ₂ /-78 °C/5 min	Et ₃ N/CH ₂ Cl ₂ /rt/3 h	89 ^b
2	CH ₂ Cl ₂ /-78 °C/30 min	Et ₃ N/CH ₂ Cl ₂ /rt/3 h	70 ^b
3	CH ₂ Cl ₂ /0 °C/5 min	Et ₃ N/CH ₂ Cl ₂ /rt/3 h	91 ^b
4	CH ₂ Cl ₂ /0 °C/5 min	Et ₃ N/CH ₂ Cl ₂ /rt/3 h	89 ^b
5	CH ₂ Cl ₂ /0 °C/5 min	NaOMe ^d /CH ₂ Cl ₂ /rt/3 h	96°
6	CH ₂ Cl ₂ /0 °C/5 min	NaOH/H ₂ O–THF/rt/3 h	83 ^b

^a Overall yield calculated on the basis of the loading of resin **1**. Over 95% purities as evaluated by NMR.

^b Purified by column chromatography.

^c Without any purification or extraction.

^d 30 wt% solution in methanol.

Download English Version:

https://daneshyari.com/en/article/5274489

Download Persian Version:

https://daneshyari.com/article/5274489

Daneshyari.com