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a b s t r a c t

This paper proposes a new method for simplifying contours based on the multi-scale analysis of the local
phase. The main advantages of the proposed method are: (i) it does not use any curvature measure
approximation to stand out the characteristic points. (ii) The symmetry/asymmetry points can be consid-
ered as dominant points of the contour and (iii) it provides a robust approach to suppress the contour
noise. The method has been compared with a representative number of other methods using an objective
measure of the quality of the generated approximation. The experimental results have shown that the
proposed method is superior to those reviewed in our study.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Contour Matching is a fundamental tool in Shape Analysis.
Many contour representations have been proposed in the relevant
literature. Zhang et al. [1] reviewed and classified shape represen-
tations and description techniques including contour representa-
tions based on a coordinates system [2,3] (Cartesian coordinates,
polar coordinates, polar coordinates in relation to the centroid
and tangential representations); chain code representation [4–6];
signature representation [7,3]; arc – height function (AHF) repre-
sentation [8,2]; polygonal representations [9,4,10]; splines and B-
splines representations [11–13] and hierarchical representations
[14,15].

A very interesting subject in contour matching is contour sim-
plification that preserves the original characteristics of shape fea-
tures. This simplification process can be described as the
partition of a contour into meaningful parts [16]. Contour partition
can be divided into two generic phases. The first phase determines
the segmentation points along the contour, while the second phase
represents each segment in terms of instances of a predefined geo-
metric primitive. Since the simplest and most commonly adopted
primitives are straight segment lines, the output of such a process
is a polygonal approximation of the original contour. The segmen-
tation points of the original contour that define the polygonal
approximation are commonly called Dominant Points.

Dominant point detection is an important research area in con-
tour approximation methods. Many algorithms are used to detect
dominant points. These methods can be classified into three cate-
gories [17]:

� Methods which search for dominant points using some signifi-
cant measure other than curvature from the original contour
scale [18–20,12,5,21–25] or from a multi-scale contour repre-
sentation [26–29]. The multi-scale methods take into account
[26] the well accepted fact that image features occur in a broad
rang of scales.

� Methods which evaluate the curvature by transforming the con-
tour to the Gaussian scale space [30–32].

� Methods which search for dominant points by directly estimat-
ing the curvature in the original picture space [33–35].

Based on the review of the proposed methods, the following
conclusions were drawn:

� Generally only corner points (extreme curvature) are considered
dominant points.

� Few authors analyse the problem of noise. Of the papers we
reviewed, none evaluated performance with noisy contours.

In this paper a new contour simplification method using a
polygonal approximation is proposed. The approximation vertices
will be the dominant point of the contour. In the revised literature,
in general, only high curvature points are considered as dominant
points. However [36], high curvature points may not provide good
approximations for smooth curves.

From the local phase analysis, also we can detect local symme-
try/asymmetry points. These points with the local phase congru-
ence points will form a candidates set to be the dominant points.
A method is proposed to select the sub-set of dominant points that
provides a very good trade-off between minimum distortion and
maximum compression rate by minimising the E2 objective func-
tion used by Carmona et al. [37].
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In Section 2, the multi-scale analysis of the local phase is de-
scribed. The proposed method for dominant points detection and
the procedure to obtain the sub-set of dominant points that defines
the polygonal approximation are shown in Section 3. In Section 4
the results of three experiments to evaluate method performance
with and without noise and a comparative study with a represen-
tative number of proposed methods are shown. Lastly, the main
conclusions are summarised in Section 5.

2. Local phase feature

The information provided by the local phase of a signal serves as
the basis of our method for two reasons:

� The phase is a dimensionless quantity that allows scale invariant
characteristics to be developed.

� The phase of a signal has been shown to be crucial in shape per-
ception [38].

Fig. 1 shows a triangular wave together with its expansion in its
first Fourier terms. Notice how the Fourier components of the wave
are all in phase at the corner point of the wave. The points at which
the local phase of the signal components coincides are called High
Phase Congruence Points.

Given a point CðtÞ of a signal, the phase congruence at this point
can be obtained from the Fourier series expansion of the signal as
follows [39]:

PCðtÞ ¼ max
�/ðtÞ2½0;2p�

P
nAn cosð/nðtÞ � �/ðtÞÞP

nAn
; ð1Þ

where An and /nðtÞ represent the amplitude and the local phase of
the n-th Fourier term, respectively. The value �/ðtÞ that maximises
PCðtÞ is the amplitude weighted mean local phase of all the Fourier
terms at the point being considered.

An initial approach to calculate the phase congruence could be
to use the Fourier transform of the signal. However, this approach
has two main drawbacks:

� The importance of a signal feature is compared to the complete
signal (great scale) without taking into account the signal fea-
ture’s importance regarding its most immediate environment
(small scale).

� The number of congruent terms at a point is not taken into
account. The larger the number of congruent terms at a signal
point, the more outstanding the signal feature will be.

One way to address these problems is to use a multi-scale anal-
ysis of the local phase. Kovesi [40] proposes using a bank of even/
odd filters to obtain the local energy of a signal with spatially local-
ised frequency.

2.1. Calculation of the phase congruence using wavelets

The wavelet analysis of a signal allows spatially localised fre-
quency information to be obtained in a very precise way. The
wavelet analysis uses a filter bank that is created from re-scalings
of a wave shape. Each scaling is designed to analyse a given range
of signal frequencies. In order to preserve phase information, lineal
phase filters should be used, that is to say, quadrature filters.

Let M : fðMe
n;M

o
nÞg, n ¼ f0;1; . . . ;Ng the bank of quadrature fil-

ters where n represents the scale parameter and N is the number
of analysed scales. Using this filter bank the following terms can
be computed:

enðtÞ ¼ CðtÞ�Me
n; onðtÞ ¼ CðtÞ�Mo

n; ð2ÞX
N

AnðtÞ ¼
X

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
enðtÞ2 þ onðtÞ2

q
; ð3Þ

where * represents the digital convolution operation.
As stated above, a signal feature will be more important if it is

present in a larger number of analysed scales. To make these points
stand out, Kovesi proposes weighting using the following sigmoid
function:

WðtÞ ¼ 1
1þ e10ð0:4�sðtÞÞ ; ð4Þ

where sðtÞ is a measure of the range of congruent frequencies at a
point t of the signal and is defined as:

sðtÞ ¼ 1
N

P
NAnðtÞ

AmaxðtÞ þ �

� �
; ð5Þ

where N is the number of analysed scales, Amax is the maximum fil-
ter bank response obtained and � is a small quantity used to avoid
division by zero.

Other drawback to calculating the phase consistency by means
of (1) is that it is proportional to the cosine of the phase angle devi-
ation /nðtÞ from the overall scales mean phase angle �/ðtÞ. The co-
sine function is not very sensitive to small variations around zero,
for example cosð25�Þ � 0:9. This implies that a poor localisation of
the signal features can be provided. To improve localisation, Kovesi
proposes using a measure of the deviation from the phase angle
which is more sensitive to small variations:

DUnðtÞ ¼ cosð/nðtÞ � �/ðtÞÞ � j sinð/nðtÞ � �/ðtÞÞj; ð6Þ

providing a second approach to calculate the phase congruence:

PC2ðtÞ ¼
WðtÞ

P
NAnðtÞDUnðtÞP

NAnðtÞ þ �
: ð7Þ

Eq. (7) can be calculated from the quadrature filter responses. For
each scale n, the filter response can be considered as a vector
ðenðtÞ; onðtÞÞ whose magnitude is AnðtÞ. The unitary vector that pro-
vides the direction of the overall mean phase angle is given by:

ð�/eðtÞ; �/oðtÞÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

NenðtÞ
� �2 þ

P
NonðtÞ

� �2
q X

N

enðtÞ;
X

N

onðtÞ
 !

:

ð8Þ

2.2. Symmetry and asymmetry features

It has been indicated in the literature [36] high curvature points
(corner points) may not provide good approximations, mainly for
smooth curve segments. We propose useful information can also
be obtained from the points that coincide with local symmetry or
asymmetry axes of the contour. These points allow to make better
approximations for smooth curve segments.

For example, Fig. 2 shows a semicircle curve. This curve has not
curvature maxima and the local phase congruence for all the curve

Fig. 1. First few terms of a triangular waveform. Notice how the Fourier compo-
nents are all in phase at the corner points.

1500 F.J. Madrid-Cuevas et al. / Image and Vision Computing 26 (2008) 1499–1506



Download English Version:

https://daneshyari.com/en/article/527466

Download Persian Version:

https://daneshyari.com/article/527466

Daneshyari.com

https://daneshyari.com/en/article/527466
https://daneshyari.com/article/527466
https://daneshyari.com

