

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 3659-3662

CAN mediated decarboxylative hydroxylation/alkoxylation of N-aryl- γ -lactam-carboxylic acids at room temperature: an easy access to N-aryl- α -hydroxy/alkoxy- γ -lactams

Pranab Haldar, Jayanta K. Ray*

Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India Received 18 February 2008; revised 26 March 2008; accepted 28 March 2008 Available online 8 April 2008

Abstract

An efficient and mild protocol for one-pot decarboxylative hydroxylation/alkoxylation of 1,3-diaryl-5-oxo-pyrrolidine-2-carboxylic acids to *trans*-5-hydroxy-1,4-diarylpyrrolidin-2-ones and 5-alkoxy-1,4-diaryl-1,5-dihydropyrrol-2-ones at room temperature using CAN in organo-aqueous solvent has been developed. © 2008 Elsevier Ltd. All rights reserved.

Keywords: Decarboxylative hydroxylation; γ-Lactam-carboxylic acid; Ceric ammonium nitrate; 1,5-Dihydropyrrol-2-one

1. Introduction

The carboxylic acid functionality is present in many classes of synthetic as well as natural bioactive aza-heterocycles. The possibility of manipulating this ubiquitous functional group under mild conditions should open up new vistas in terms of partial syntheses and improved biological activity profiles. A number of high valent metals, ¹ for examples, Pb(IV), Mn(III) and Tl(III) have been used as oxidative decarboxylating agents, but all of these reagents suffer from the disadvantages of toxicity. Due to the lack of a convenient oxidizing agent, the room temperature decarboxylative hydroxylation/alkoxylation of γ -lactam-carboxylic acids in a single-step is a complex problem in synthetic organic chemistry. This one-pot transformation would be very useful for the synthesis of a variety of bioactive hydroxy/alkoxy-γ-lactam derivatives which constitute attractive synthetic targets for promising biological applications including antimicrobial, 2a α -glucosidase inhibiting 2b and as neuritogenic agents. 2c,d

α-Hydroxy-γ-lactams are of particular interest to chemists due to their versatile applications, for example, as the core structure of the neuritogenic agent epolactaene, 3a in the synthesis of a number of heterocyclic compounds 3b,c and also as precursors for the highly reactive cyclic α-acyliminium ion. 3d N-Methyl- α -hydroxy- γ -lactam is an important intermediate for the synthesis of (-)ecgoninic acid, 3e whereas the alkaloid isolongistrobine contains an N-aryl- α -hydroxy- γ -lactam unit as a key structural feature. ^{3f} N-Alkyl-α-hydroxy-γ-lactams are usually prepared as the major product by anodic oxidation of N-alkyl- γ -lactams, ^{4a} NaBH₄/HCl mediated regioselective reduction of substituted succinimides, 4b osmium tetroxide-sodium metaperiodate (Lemieux-Johnson reagent)4c mediated oxidation of cis- or trans-4-octen-1,8-dicarboxamides^{4d} or via an electrochemical method.4e

Although radical-induced decarboxylation of amino acids⁵ is of great significance for biological systems considering the many well-established enzymatic or metabolic pathways for radical generation in vivo,⁶ to date there are no reports on the one-pot decarboxylative hydroxylation/alkoxylation of γ -lactam-carboxylic acids at room temperature. In continuation of our ongoing interest to develop simple methodologies⁷ for various functional

^{*} Corresponding author. Tel.: +91 3222 283326; fax: +91 3222 282252. E-mail address: jkray@chem.iitkgp.ernet.in (J. K. Ray).

group transformations of *N*-aryl- γ -lactam derivatives, herein we report our study on a reagent system that provides a simple, one-step method for the conversion of 1,3-diaryl-5-oxo-pyrrolidine-2-carboxylic acids (1,3-diaryl- γ -lactam-2-carboxylic acids) to *trans*-5-hydroxy-1,4-diaryl-pyrrolidin-2-ones (*trans*-1,4-diaryl- α -hydroxy- γ -lactams) and 5-alkoxy/azido-1,4-diaryl-1,5-dihydropyrrol-2-ones at room temperature.

The advantages of good solubility in water (1.41 g/mL at 25 °C and 2.27 g/mL at 80 °C), low cost, low toxicity, commercial availability, ease of handling and the profound reactivity endowed in the reduction potential of +1.6 V compared to NHE (normal hydrogen electrode) have contributed to the general acceptance of ceric ammonium nitrate (CAN) as a versatile one-electron oxidant for carbon–heteroatom bond formation reactions⁸ and give rise to the possibility of the development of more practical reactions in organo-aqueous medium at room temperature.

In view of the above usefulness of CAN as a single electron oxidant, we became interested in exploring its reactivity towards the decarboxylative hydroxylation/alkoxylation of 1,3-diaryl-5-oxo-pyrrolidin-2-carboxylic acids (1,3-diaryl- γ -lactam-2-carboxylic acids) at room temperature in organo-aqueous solvent.

The starting materials for this study, 1,3-diaryl-5-oxopyrrolidin-2-carboxylic acids 1, were synthesized following the general method 7,9 developed in our laboratory. Decarboxylative hydroxylation 10 of 1 with CAN in acetonitrile—water (1:1, v/v) at room temperature furnished exclusively *trans*-5-hydroxy-1,4-diarylpyrrolidin-2-ones 2 (Scheme 1) in high yields (Table 1).

The trans arrangement of the C-4 and C-5 substituents of **2** was confirmed from the coupling constant values between C-4H and C-5H (~2–2.4 Hz).¹¹

Although the mechanism of the reaction is uncertain, as might be expected of a very powerful one-electron oxidant, the chemistry of Ce(IV) oxidation of organic molecules is dominated by radical cation chemistry and by analogy¹²

Scheme 1.

Table 1
Synthesis of *trans*-5-hydroxy-1,4-diarylpyrrolidin-2-ones **2** from 1,3-diaryl-5-oxo-pyrrolidin-2-carboxylic acids **1**

Substrate	Ar	Ar'	Product	Yield (%)
1a	Ph	Ph	2a	90
1b	$4-ClC_6H_4$	Ph	2b	88
1c	$3,4-Cl_2C_6H_3$	Ph	2c	87
1d	$3-Cl,4-FC_6H_3$	Ph	2d	88
1e	$3-Cl,4-FC_6H_3$	2-Thienyl	2e	82
1f	$4-FC_6H_4$	Ph	2f	91

$$\begin{array}{c|c}
Ar & CO_2H & Ar & CO_2H & Ar & CO_2H & Ar & CO_2H & CO_2H & Ar & CO_2H & CO_$$

Scheme 2.

it can be speculated that the reaction proceeds (Scheme 2) through an N-acyliminium intermediate. The mechanism involving a complex intermediate as evidence for a complex in the Ce(IV) oxidation of acetic acid has been obtained. This complex is generated through loss of CO_2 leading to an alkyl radical α to nitrogen, which is easily oxidized by excess CAN to a cation, and the resulting iminium ion is converted to the α -hydroxy- γ -lactam (trans-5-hydroxy-1,4-diarylpyrrolidin-2-one) via nucleophilic attack of water.

The pleasing outcome of the above reaction prompted us to extend this method to include other nucleophilic solvents. Instead of water, we performed the same reaction using alcohols with acetonitrile (1:1, v/v). However, in this case, dehydrogenation ¹⁴ along with decarboxylative alkoxylation (Scheme 3) occurred to give 5-alkoxy-1,4-diaryl-1,5-dihydropyrrol-2-ones 3 in good yields (Table 2).

To further test the generality of this reaction we next investigated the reaction of *trans*-1-(3,4-dichlorophenyl)-3-phenyl-5-oxo-pyrrolidin-2-carboxylic acid **1c** (1 mmol) with sodium azide (1.1 mmol) as the nucleophilic agent in acetonitrile (15 mL) at room temperature. After stirring for 5 h, we obtained 5-azido-1-(3,4-dichlorophenyl)-4-phenyl-1,5-dihydropyrrol-2-one **4** in 77% yield (Scheme 4).

Though we are able to speculate a possible mechanistic pathway for the decarboxylative hydroxylation (Scheme 2), we are unable to put forward a plausible mechanism for the dehydrogenation to give compounds 3 and 4.

In summary, we have developed a mild and efficient method for the synthesis of α -hydroxy/alkoxy/azido- γ -

Scheme 3.

Table 2
Synthesis of 5-alkoxy-1,4-diaryl-1,5-dihydropyrrol-2-ones **3** from 1,3-diaryl-5-oxo-pyrrolidine-2-carboxylic acids **1**

Substrate	Ar	Ar'	R	Product	Yield (%)
1a	Ph	Ph	Et	3a	84
1f	$4-FC_6H_4$	Ph	Me	3b	93

Download English Version:

https://daneshyari.com/en/article/5274871

Download Persian Version:

https://daneshyari.com/article/5274871

Daneshyari.com