

Tetrahedron Letters 48 (2007) 8834-8838

Tetrahedron Letters

Carbohydration of 1,4,8,11-tetraazacyclotetradecane (cyclam): synthesis and binding properties toward concanavalin A

Holger Stephan,^{a,*} Anika Röhrich,^a Steffi Noll,^a Jörg Steinbach,^a Ralf Kirchner^b and Jürgen Seidel^b

^aForschungszentrum Dresden-Rossendorf, Institute of Radiopharmacy, PO Box 510119, D-01314 Dresden, Germany ^bTU Bergakademie Freiberg, Institute of Physical Chemistry, D-09596 Freiberg, Germany

> Received 30 July 2007; revised 10 October 2007; accepted 15 October 2007 Available online 22 October 2007

> > Dedicated to Dr. Hartmut Spies in memoriam

Abstract—Two novel glycocluster ligands with cyclam core bearing thiourea-linked p-glucose and 2-acetamido-2-deoxy-p-glucose at the periphery have been synthesized. The interaction with concanavalin A has been studied by isothermal titration microcalorimetry for characterizing protein-ligand interactions. The sugar-containing multivalent ligands showed higher association affinity compared to the sugar monomers, which is attributed to an entropy driven glycoside clustering effect.

© 2007 Elsevier Ltd. All rights reserved.

Radiopharmaceuticals based on the metallic radionuclides ^{64/67}Cu, ^{99m}Tc, ^{186/188}Re and ⁹⁰Y are often used for diagnostic and therapeutic purposes.1 Cyclam and its derivatives are one of the most important ligands for the radionuclides mentioned above.² Regarding to radiopharmaceutical applications radiometal complexes of cyclam derivatives with hydrophilic surface groups are attractive candidates. Recently, we could show that a star-like cyclam ligand appended with four PEG-arms rapidly forms stable copper(II) complexes.³ Besides the pegylation the carbohydration of radio-labelled compounds is of considerable interest to improve the pharmacokinetics and tumor accumulation.⁴ In this perspective, carbohydrate clusters are gaining in importance as interesting targets.⁵ Thus, sugar-containing dendritic wedges show both unique cell uptake behavior and specific carbohydrate-protein interaction.^{6,7} However, only a couple of examples of glycoclusters with metal complexing units are known. In connection with the work to be presented in this Letter, upper rim calyx[4]arene divalent glycoclusters have to be mentioned. 8 Glycosylated macrocyclic amphiphiles with

cyclam as core element show unique self-aggregation properties and have the potential for use in enantioselective metal-catalyzed reactions. Proy and Kim described dendritic bipyridyl-glycoclusters whereby particularly the corresponding Cu(II)-complexes show enhanced efficacy to inhibit the binding of asialoglycoprotein to the lectin VVA-HRP. Recently, glycoconjugates possessing dendritic wedges with 12 glucose or galactose groups linked to a central gadolinium complex have been developed in view of MRI applications. 11

Currently, we are focusing our attention on the development of dendritic ligands having both enhanced complex stability and improved bio-availability. In this perspective, the synthesis of two glycoclusters with a cyclam core modified with thiourea-linked sugar residues at the periphery of the molecules is presented. D-glucose and 2-acetamido-2-deoxy-D-glucose have been chosen as sugar moieties. The interaction of these sugar-containing ligands with concanavalin A has been studied using isothermal titration microcalorimetry to characterize protein-ligand interaction and possible cluster effects.

The glycocluster ligands **6** and **7** were prepared by glycosylation of the tetraamino-functionalized cyclam core predecessor $\mathbf{1}^3$ using the *O*-acetyl-protected glucosyl isothiocyanates $\mathbf{2}^{12}$ and $\mathbf{3}^{13}$ (Scheme 1). The reaction course

Keywords: Cyclam; Carbohydrates; Thiourea-bridging; Lectins; Isothermal titration microcalorimetry.

^{*}Corresponding author. Tel.: + 49 351 260 3091; fax: +49 351 260 3232; e-mail: h.Stephan@fzd.de

Scheme 1. Synthesis of 6 and 7. Reagents and conditions: (i) excess of 2 and 3, CHCl₃ (MeOH), rt, 6 days, Al₂O₃, CHCl₃/MeOH (12:1), (4: 85 %), 1 day (5: >50%); (ii) NaOMe/MeOH, pH 8–9, rt, 2 h, neutralization with DOWEX 50WX8, SEC (6: 69%; 7: 37%).

was studied by thin layer chromatography [neutral alumina plates, methanol, $R_{\rm f} = 0$ (1), $R_{\rm f} = 0.92$ (2, 3), $R_{\rm f} = 0.33$ (4, 5)]. The reaction was completed after 6 days for 4 and 1 day for 5. The purification of the O-acetylated products was not trivial. Due to irreversible sorption of 4 and 5 on silica gel, flash chromatography failed. The replacement of acetyl- by benzoyl-protecting

groups for the glucosyl isothiocyanates led to highly lipophilic cluster compounds allowing the purification by silica gel chromatography.

However, thiourea-bridging reaction of **1** with 2,3, 4,6-tetra-*O*-benzoyl-β-D-glucopyranosyl isothiocyanate proved to be rather slow and low yielding. Therefore,

Download English Version:

https://daneshyari.com/en/article/5275129

Download Persian Version:

https://daneshyari.com/article/5275129

<u>Daneshyari.com</u>