

Available online at www.sciencedirect.com



Tetrahedron Letters

Tetrahedron Letters 48 (2007) 8619-8622

## Pd-mediated synthesis of novel pentacyclic benzoazepino-[2,1-*a*]isoindoles from enamides of Baylis–Hillman adducts

Saravanan Gowrisankar,<sup>a</sup> Hyun Seung Lee,<sup>a</sup> Ka Young Lee,<sup>a</sup> Ji-Eun Lee<sup>b</sup> and Jae Nyoung Kim<sup>a,\*</sup>

<sup>a</sup>Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Republic of Korea <sup>b</sup>Department of Chemistry (BK21) and Central Instrument Facility, Gyeongsang National University, Jinju 660-701, Republic of Korea

> Received 20 September 2007; accepted 5 October 2007 Available online 11 October 2007

Abstract—Novel pentacyclic benzoazepino[2,1-a]isoindole derivatives were synthesized by palladium-mediated consecutive cyclization from enamides of Baylis–Hillman adducts. © 2007 Elsevier Ltd. All rights reserved.

Very recently, we reported the synthesis of tetrahydropyrido[2,1-*a*]isoindole derivative **A** (Scheme 1) under radical cyclization conditions from enamide derivative **1a**, which was prepared from Baylis–Hillman adducts.<sup>1</sup> During the radical cyclization reaction of **1a**, we did not observe the formation of seven- or eight-membered cyclic compounds. The results could be explained by the faster hydrogen atom abstraction by the aryl radical

than the radical cyclization pathways.<sup>1</sup> However, seven-

or eight-membered ring compounds could be constructed by using Heck type cyclization of **1a** as shown in Scheme 1.<sup>2-4</sup> We reasoned that if the carbopalladation during the reaction progress would occur to form the eight-membered intermediate we could observe the formation of compound **B**, otherwise we could obtain **2a**, when the first carbopalladation occurs to form the seven-membered intermediate, followed by a second carbopalladation and  $\beta$ -elimination.<sup>2-4</sup>



## Scheme 1.

Keywords: Baylis-Hillman adducts; Benzoazepino[2,1-a]isoindole; Carbopalladation; Enamides.

<sup>\*</sup> Corresponding author. Tel.: +82 62 530 3381; fax: +82 62 530 3389; e-mail: kimjn@chonnam.ac.kr

<sup>0040-4039/\$ -</sup> see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.10.043

| Entry | Catalyst (equiv)           | Base (equiv)             | Ligand (equiv)         | Additives (equiv) | Solvent            | Temperature (°C) | Time (h) | Yield (%)         |
|-------|----------------------------|--------------------------|------------------------|-------------------|--------------------|------------------|----------|-------------------|
| 1     | Pd(OAc) <sub>2</sub> (0.2) | NaHCO <sub>3</sub> (2.0) | None                   | TEAC1 (1.0)       | DMF                | 80               | 3        | 40                |
| 2     | $Pd(OAc)_2$ (0.2)          | NaHCO <sub>3</sub> (2.0) | None                   | TBAC1 (1.0)       | DMF                | 80               | 3        | 49                |
| 3     | $Pd(OAc)_2$ (0.2)          | NaHCO <sub>3</sub> (2.0) | None                   | TBAB (1.0)        | DMF                | 80               | 3        | 55                |
| 4     | $Pd(OAc)_2$ (0.2)          | NaHCO <sub>3</sub> (2.0) | PPh <sub>3</sub> (0.2) | TBAB (1.0)        | DMF                | 80               | 14       | 51 <sup>a</sup>   |
| 5     | $Pd(OAc)_2$ (0.4)          | Et <sub>3</sub> N (2.0)  | PPh <sub>3</sub> (0.4) | TBAB (1.0)        | CH <sub>3</sub> CN | Reflux           | 60       | 29 <sup>a,b</sup> |
| 6     | PdCl <sub>2</sub> (0.2)    | NaHCO <sub>3</sub> (2.0) | None                   | TBAB (1.0)        | DMF                | 100              | 16       | 33                |

Table 1. Optimization of reaction conditions for the synthesis of 2a from 1a

<sup>a</sup> Slow reaction compared to entry 3.

<sup>b</sup> Compound **1a** was recovered in 47%.

To check the feasibility of the reaction, we examined the reaction conditions with enamide 1a as the representative example (Table 1). We obtained benzoazepino[2,1-a]isoindole derivative 2a in variable yields. We could not isolate any other compounds, such as compound **B**, in appreciable amounts. Among the conditions, the Pd(OAc)<sub>2</sub>/n-Bu<sub>4</sub>NBr/NaHCO<sub>3</sub>/DMF/80 °C use of (entry 3) gave the best results for the formation of 2a (55%). The presence of triphenylphosphine reduced the reaction rate (entry 4) and the use of triethylamine was less effective (entry 5). The structure of 2a was confirmed by its <sup>1</sup>H, <sup>13</sup>C NMR, mass data, and eventually by its crystal structure (Fig. 1).<sup>5,6</sup> As shown in Scheme 2, the formation of compound 2a can be rationalized as follows: oxidative palladation, successive double carbopalladation, and the final  $\beta$ -elimination process.<sup>2–4</sup>

Benzoazepino[2,1-*a*]isoindoles and related compounds have been prepared and studied extensively due to their interesting biological activities and abundance in natural products.<sup>7</sup> However, most of the reported methods for the synthesis of these compounds used *N*-acyliminium ion chemistry.<sup>7</sup> In these contexts, an efficient synthetic approach of benzoazepino[2,1-*a*]isoindole skeleton involving palladium-mediated cyclization protocol could provide an alternative for *N*-acyliminium ion chemistry.

Thus we examined the reactions of enamides **1b–f** under the optimized conditions and the results are summarized in Table 2. The required starting materials **1a–d** and **1f** were prepared from the Baylis–Hillman adducts of 2bromobenzaldehydes in reasonable yields as reported by following the process in Scheme 3 (**1a** as a typical



Figure 1. ORTEP drawing of compound 2a.

example).<sup>1</sup> For the preparation of **1e**, we used 3-*n*-propylidenephthalide instead of 2-acetylbenzoic acid at the last stage. With these enamides, **1b**–**f**, we carried out the reactions under the optimized conditions (entry 3 in Table 1). The reaction of **1b** and **1c** showed similar results (entries 2 and 3) and the reaction can be applied equally well to the benzylidene derivative **1d** and we obtained the corresponding pentacyclic compound **2d** in a similar yield (entry 4). However, as expected, we obtained **2e** in the case of propylidene derivative **1e**. The presence of  $\beta$ -hydrogen in the propylidene moiety



Download English Version:

## https://daneshyari.com/en/article/5275323

Download Persian Version:

https://daneshyari.com/article/5275323

Daneshyari.com