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Abstract

This paper presents some definitions and propositions concerning to dual fractals. Among them, dual-similarity plays a key-role not
only in generating dual fractals but also in handling inter-pattern relations. Dual-similarity is basically defined as a pair of the similarity
relations between two patterns, from which two mirror operators have been derived. This paper shows that each mirror operator is noth-
ing but a contraction mapping associated with a unique attractor. Next, the mirror operator has been extended to ring mapping defined as
a cyclic sequence of contraction mappings for a sequence of patterns. Basic experiments have been carried out, correlating with some
application schemes, to verify the obtained theoretical outcomes in the sense of approximation to the truth.
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1. Introduction

Fractal geometry [1] has been attractive for a long time
for people engaged in computer graphics, pattern recogni-
tion, image coding and other related subjects. In relation to
such subjects, many fractal applications have already been
presented [2-11]. Among them, the fractal image compres-
sion technique [3,5] has given a strong impact on studies on
fractals not only in terms of image coding but also in terms
of practical understanding of fractals. Especially MRCM
(Multiple Reduction Copy Machine) or IFS (Iterated Func-
tion System) has given a key to open doors towards break-
ing fresh ground in fractal geometry.

As is well known, every fractal pattern is characterized
by a set of similarity relations between the entire pattern
and its parts as seen in the well-known Koch curve (see
Fig. 1). Mathematically this is termed self-similarity. Either
MRCM or IFS can be regarded as a procedural represen-
tation of self-similarity, by which a fractal pattern is to
be defined as the limit pattern. It is a very suggestive exam-
ple that the Sierpinski gasket, one of the well-known fractal
patterns, can be explained as the limit pattern resulting
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from running a simple MRCM infinitely many times [3].
An MRCM, in short, corresponds to a set of self-similarity
relations to determine a fractal pattern. Hutchinson repre-
sented an MRCM by a set of contraction mappings, which
is termed Hutchinson operator [12]. This operator plays an
important role in extending self-similarity to different
phases.

Self-similarity is nothing but a set of inner relations
defined within one fractal pattern, so that it has been iso-
lated from mutual relations between patterns; i.e. inter-pat-
tern relations. To discuss such relations in terms of fractal
geometry, we have to build a bridge across a gap between
self-similarity and inter-pattern relations. We introduce the
dual-similarity that is the very thing compared to the
bridge.

In Section 2, we first organize a collection of well-known
definitions and theorems about fractals towards introduc-
tion of dual-similarity. Meanwhile, a pair of two intimate
fractal patterns, termed dual fractals, derived from dual-
similarity has been introduced [13]. In Section 3, we have
described the dual-similarity by a pair of Hutchinson oper-
ators: Since dual fractals can also be explained by MRCM
associated with self-similarity, we discuss dual fractals also
in connection with self-similarity. Here emphasis has been
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Fig. 1. Koch curve and contraction mappings: Koch curve is partitioned into the four parts each of which is a 1/3 contraction of the entire pattern. This
structure, termed self-similarity, can be interpreted by a Hutchinson operator [S]. Koch curve has five definite points A, B, C, D and E shown in (a).
Suppose a rectangular region R surrounding the entire pattern in (b), including a line segment AE. Here we can reduce R into four 1/3 contractions R}, R},
R’ and R} and place them along four line segments AB, BC, CD and DE, respectively. Let 7; (i=1,..., 4) be such a contraction mapping that reduces a
pattern drawn in R into a 1/3 contraction and pastes it on each of {R]}. Then Koch curve can be given by attractor ¢ of a Hutchinson operator
T=T,UT,U T3U T, From Theorem 1, for a given pattern f, the sequence {7"f|n = 1,2, ... } converges to attractor ¢. When f'is line segment AE in (b),

an initial part of the sequence; f, Tf, T%f and T°f is shown as (c).

placed on mathematical discussion on the mutual relation
between dual-similarity, dual fractals and self-similarity.
Then we describe the ring mapping for a cyclic sequence
of patterns, which has been introduced as extension of
dual-similarity. Finally, in Section 4, we present basic
experiments to verify our theoretical outcomes obtained
in the first half of this paper.

2. Contraction mapping and fractals

The concept of fractals has brought together under one
umbrella a broad range of preexisting concepts from pure
mathematics to the most empirical aspects of engineering.
It is not clear that a single mathematical definition can
encompass all these applications [3], but we make too much

of contraction mappings for representation of fractal gen-
erating procedures. Here we discuss the self-similarity in
the light of mathematical mapping (or transformation) in
the metric space. The first step towards our discussion is
to put some definitions.

Definition 1. Let 7 be a set of real numbers {x]|0 < x < 1}.
Let every pattern depicted on the continuous unit square
P= {(x1,x2)|x1,x2 € I} be defined by a real-valued func-
tion 0 < f{x1,x,) <1 that means gray-level on a point
(x1,x2). Let x = (x,x,), then a pattern is written f{x) and,
sometimes, denoted simply as f.

When pattern f{x) is a binary pattern of which value is
either 0 or 1, f'is equivalent to a set of points Syin P. Sym-
bolically we can write
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