ELSEVIER

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Electrophilic substitution reactions using an electrogenerated ArS(ArSSAr)⁺ cation pool as an ArS⁺ equivalent

Kouichi Matsumoto ^a, Yuki Kozuki ^a, Yosuke Ashikari ^c, Seiji Suga ^b, Shigenori Kashimura ^a, Jun-ichi Yoshida ^{c,*}

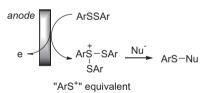
- ^a Faculty of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
- b Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan

ARTICLE INFO

Article history: Received 21 December 2011 Revised 29 January 2012 Accepted 31 January 2012 Available online 7 February 2012

Keywords: Sulfenium ion Disulfide Oxidation Electrophilic substitution Electrochemistry

ABSTRACT


Arylbis(arylthio)sulfonium ions (ArS(ArSSAr)⁺), which were generated and accumulated by the low-temperature electrolysis of diaryl disulfide (ArSSAr), were found to serve as ArS⁺ equivalent in electrophilic substitution reactions of aromatic compounds, enolizable ketones, enol acetates, ketene silyl acetals and allylsilanes to give the corresponding arylthiolated products.

© 2012 Elsevier Ltd. All rights reserved.

Introduction

The arylthio (ArS) substituted organic compounds are widely utilized in the organic synthesis, because of the easy generation of carbanions adjacent to the sulfur atom and easy removal of the ArS group.¹ ArS-substituted compounds, especially aromatic compounds have also received significant research interest in the functional materials.² Various methods for the synthesis of ArS-substituted compounds have been developed so far. Among them, the direct introduction of ArS group to the organic molecule is one of the most straightforward methods. Arylsulfenium ions³ (ArS⁺) seem to be suitable reagents for this purpose, because the reactions of ArS⁺ with carbon nucleophiles should lead to the formation of ArS-substituted organic compounds. A popular method to generate ArS⁺ is heterolysis of ArS-X (X = halogen) using silver salts.⁴ However, the method suffers from the problems of instability of ArS-X, high cost of silver salts, and wastes of silver halides.

Recently, we have revealed that highly reactive arylbis(arylthio)sulfonium ions 5 (ArS(ArSSAr) $^+$) can readily be generated and accumulated in the solution by the low-temperature electrochemical oxidation 6 of diaryl disulfide (ArSSAr) 7 in CH₂Cl₂ using Bu₄-NBF₄ or Bu₄B(C₆F₅)₄ as a supporting electrolyte. The ArS(ArSSAr) $^+$ cation pool was found to serve as an effective reagent for introduc-

Scheme 1. The generation and accumulation of ArS(ArSSAr)⁺ cation pool and its reactions with carbon nucleophiles (electrophilic substitution reactions).

ing the ArS group into alkenes and dienes, as well as generating alkoxycarbenium ions from thioacetals.^{8,9} In this Letter, we report that ArS(ArSSAr)[†] cation pool serves as an effective reagent for introducing the ArS group in electrophilic substitution reactions of aromatic compounds, enolizable ketones, enol acetates, ketene silyl acetals, and allylsilanes (Scheme 1).

Results and discussion

We first focused on the reactions of ArS(ArSSAr) $^{+}$ with aromatic compounds. A typical procedure is as follows. In the first step, a solution of ArS(ArSSAr) $^{+}$ BF $_{-}^{-}$ (Ar = p-FC $_{6}$ H $_{4}$) was generated and accumulated by the anodic oxidation of ArSSAr (0.40 mmol) in 0.3 M Bu $_{4}$ NBF $_{4}$ /CH $_{2}$ Cl $_{2}$ (8.0 mL) at -78 °C (0.67 F/mol). 0.67 F/mol is the theoretical amount of electricity to convert ArSSAr into ArS(ArSSAr) $^{+}$. In the second step, 1,3,5-trimethoxybenzene

^{*} Corresponding author. Tel.: +81 75 383 2726; fax: +81 75 383 2725. E-mail address: yoshida@sbchem.kyoto-u.ac.jp (J. Yoshida).

(0.20 mmol) was added to the anodic solution containing ArS(ArS-SAr) † BF $_4^-$ (ca. 0.27 mmol) at -78 °C, and the solution was stirred at the same temperature for 3 min. Then, Et $_3$ N (1 mL) was added to quench the reaction. The work-up followed by chromatography gave 2-ArS-1,3,5-trimethoxybenzene in an 84% yield (Table 1, entry 1). It is noteworthy that the reaction was completed within 3 min at -78 °C, indicating that ArS(ArSSAr) † is highly reactive. 10

The reactions with other aromatic compounds were examined. As shown in Table 1, m-methoxytoluene and 3,5-dimethoxychlorobenzene reacted with ArS(ArSSAr) $^+$ quickly at -78 $^{\circ}$ C to give the corresponding mono ArS-substituted products in high yields (entries 2 and 3).

Enolizable ketones also reacted with ArS(ArSSAr)⁺ and the ArS group was introduced to the α -carbon. The reaction of acetophenone is interesting. ArS was introduced to the methyl carbon selectively. The aromatic ring was not affected, presumably because of electron-withdrawing effect of the carbonyl group (entry 4). Ethyl phenyl ketone also reacted with ArS(ArSSAr)⁺ and ArS was introduced to the α -carbon selectively, although the yield was moderate (entry 5). 1,3-Dicarbonyl compounds such as acetylacetone reacted with ArS(ArSSAr)⁺ and the ArS group was introduced into the methylene carbon in a moderate yield (entry 6). In contrast, the reaction of dimethyl malonate with ArS(ArSSAr)⁺ did not proceed

at all (entry 7). Enol acetate reacted with ArS(ArSSAr)⁺ to give ArS-substituted compounds in a moderate yield (entry 8).

Next, reactions of ArS(ArSSAr)⁺ with silyl-substituted carbon nucleophile such as ketene silyl acetal was examined. The reaction of ArS(ArSSAr)⁺ with dimethylketene methyltrimethylsilylacetal gave the corresponding ArS-substituted product in a good yield (entry 9).

The effect of the counter anion is interesting. The reaction of electrogenerated ArS(ArSSAr)*X⁻, which was prepared by the anodic oxidation of ArSSAr (0.40 mmol) in Bu₄N*X⁻/CH₂Cl₂, with 3-(trimethylsilyl)cyclohexene (1.00 mmol) was examined (X⁻ = BF₄ or B(C₆F₅)₄.). The use of BF₄ as X⁻, the reaction gave the allylated product (0.28 mmol) quantitatively (Scheme 2).¹¹ In contrast, the use of B(C₆F₅)₄ as X⁻ led to the formation of the allylated product in a 188% yield based on the electricity (0.506 mmol). Surprisingly, the decrease in the amount of electricity (0.20 F/mol) led to the formation of a significant amount of the allylated product (463% yield based on the electricity, 0.370 mmol), indicating that a catalytic amount of ArS(ArSSAr)* is sufficient for the reaction.

The following explanation seems to be reasonable (Scheme 3). One mole of $ArS(ArSSAr)^{\dagger}$ reacted with the 3-(trimethylsilyl)cyclohexene to generate one mole of the arylthiolated product, one mole of ArSSAr, and one mole of $Me_3Si^{\dagger}B(C_6F_5)_4^{-}$. $Me_3Si^{\dagger}B(C_6F_5)_4^{-}$ reacted

Table 1 Reactions of ArS(ArSSAr)⁺ cation pool with carbon nucleophiles (Ar = p-FC₆H₄)³

Entry	Carbon nucleophile	Conditions	Product	% Yield ^b
1	OMe MeO OMe	−78 °C, 3 min	OMe SAr MeO OMe	84
2	OMe	−78 °C, 3 min	ArSOMe	90
3	CI MeO OMe	−78 °C, 3 min	CI SAr MeO OMe	Quant
4	0	0 °C, 24 h	O SAr	96 ^c
5		0 °C, 24 h	SAr	48 ^{c,d}
6		0 °C, 24 h	SAr	46
7	MeO OMe	0°C, 24 h	MeO OMe	n.d.
8	OAC	−78 °C, 3 min	Ars	34
9	OSiMe ₃ OMe	−78 °C, 3 min	Ars	82

^a A Typical procedure: ArSSAr (Ar = p-FC₆H₄, 0.40 mmol, 2 equiv) was oxidized electrochemically in 0.3 M Bu₄NBF₄/CH₂Cl₂ at -78 °C using 0.67 F/mol of electricity. The solution of ArS(ArSSAr)*BF₄ (ca. 0.27 mmol) thus obtained was allowed to react with carbon nucleophile (0.20 mmol). Then the reaction was quenched with Et₃N (1 mL).

b Isolated vield.

^c 4.5 equiv of ArSSAr (Ar = p-FC₆H₄) was used.

^d The purity of the product was ca. 80%.

Download English Version:

https://daneshyari.com/en/article/5275790

Download Persian Version:

https://daneshyari.com/article/5275790

<u>Daneshyari.com</u>