

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 7747–7750

Expedient synthesis of villosin and its isomer (*E*)-labda-8(17),12,14-trien-15(16)-olide

John Boukouvalas,* Jian-Xin Wang and Olivier Marion

Département de Chimie, Université Laval, Quebec City, Que., Canada G1K 7P4

Received 5 June 2007; revised 5 September 2007; accepted 5 September 2007 Available online 11 September 2007

Abstract—The synthesis of the title compounds has been achieved in concise, highly regiocontrolled fashion from commercially available (+)-sclareolide. In addition, we offer evidence that the structure of a newly reported natural product from *Zingiber ottensii* is incorrect.

© 2007 Elsevier Ltd. All rights reserved.

Villosin (1) is a labdane diterpenoid originally obtained from *Hedychium coronarium* (Zingiberaceae),^{1a} a medicinal plant used in many countries for treating ailments such as headache, fever, and rheumatism.² Subsequently, the same compound was isolated from the related herbs *Hedychium villosum* (hence the name villosin)^{1b} and *Hedychium forrestii*.^{1c} There is strong evidence that the anti-inflammatory properties of these natural medicines stem from the suppressive effects of their diterpene constituents on vascular permeability and/or NO production.^{2a} In addition, the labdanes extracted from *H. coronarium* have attracted much attention due to other potentially useful biological properties, including antitumor and antiallergic activities.^{2b,c}

A notable structural feature of **1** is the (E)-3-(1-alkenyl)-2(5*H*)-furanone unit, which is encountered in a rapidly expanding group of natural products³ and bioactive derivatives,⁴ that also includes hedyforrestin *B* (**2**)⁵ and saponaceolide *G* (**4**, Fig. 1).⁶ Recently, the villosin isomer (*E*)-labda-8(17),12,14-trien-15(16)-olide (**3**),⁷ featuring a less common (*E*)-3-alkylidene-2(3*H*)-furanone moiety,⁸ was reported by Kikuzaki as a new phytochemical constituent of the Malaysian medicinal plant Zingiber ottensii (Zingiberaceae).⁷

Figure 1.

Our interest in the development of useful methods for the regio and stereocontrolled construction of lactone containing terpenes,⁸⁻¹⁰ prompted us to explore a new pathway to alkenylfuranones **A**, based entirely on the judicious use of 2-furanolate chemistry (Scheme 1). In a departure from traditional approaches,¹¹ access to **A** was envisioned via its alkylidene counterpart **B**, which would arise by C3-regioselective aldol reaction of a boron 2-furanolate with the appropriate aldehyde and ensuing E1cb elimination. Reported herein is the successful implementation of this strategy to a concise synthesis of villosin (1) and its isomer **3**, along with

Keywords: Aldol reaction; 2-Furanolates; Labdanes; Lactones; Misassigned structure; Villosin.

^{*}Corresponding author. Tel.: +1 418 656 5473; fax: +1 418 656 7916; e-mail: john.boukouvalas@chm.ulaval.ca

^{0040-4039/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.09.033

Scheme 1. Retrosynthetic analysis for A and B.

irrefutable proof that Kikuzaki's structural assignment⁷ (vide supra) is incorrect.¹²

The requisite aldehyde **6** was efficiently prepared from commercially available (+)-sclareolide (**5**) according to previously established methodology⁹ (Scheme 2). Aldol reaction of **6** with in situ generated dibutylboron 2-furanolate¹³ proceeded with complete regioselectivity to furnish the diastereomeric alcohols **7a** and **7b** (3.8:1 ratio) in 95% yield after flash chromatography.¹⁴ These alcohols were initially transformed to (–)-villosin (**1**) by conversion to the corresponding mesylates **8a,b** and subsequent treatment with DBU (78% over two steps). While this sequence could be performed in one-pot fashion, the yield of **1** was only about 50%. After trying a number of alternative procedures, we were pleased to find that heating the mixture of alcohols **7a,b** with Al₂O₃ in pyridine¹⁵ directly provided **1** in 89% yield.

Synthetic 1 exhibited NMR data¹⁶ in full agreement with those of the natural product,¹ and its specific rotation was the same in sign with a sample derived from *Hedychium coronarium*.^{1a} Although optical data are unavailable for the samples isolated from *Hedychium villosum*^{1b} and *Hedychium forrestii*,^{1c} the co-occurrence of villosin with other diterpenoids belonging to the *normal* labdane series,¹ such as isocoronarin *D* or coronarin *E*,¹⁷ suggests that all three plants produce the same enantiomer (cf. 1).

Further scrutiny of the transformation of mesylates **8a,b** to villosin (1) provided evidence in support of our working assumption that alkylidenefuranone **3** is involved as an intermediate (cf. **B** in Scheme 1). Thus, when DBU was replaced by Hünig's base, compound **3**¹⁸ was obtained as the main product together with a small amount of its Z-isomer **9**¹⁹ (ratio 3.9:1; Scheme 2).²⁰ Also, exposure of **3** to DBU in dichloromethane at room temperature accomplished rapid isomerization to villosin.

The respective identities of **3** and **9** were unequivocally established by direct comparison of their NMR spectra with those of simple 3-alkylidenefuranones prepared by an alternative, highly stereoselective method.⁸ Moreover, the chemical shifts of the olefinic protons of our compounds were identical with the values recorded for a pair of E/Z 3-alkylidenefuranones derived from saponaceolide A.²¹ However, neither the ¹H nor the ¹³C NMR data of synthetic **3** matched those reported by Kikuzaki.⁷ Given the irreconcilable differences in the chemical shifts of the C11–16 fragment (Table 1), it is obvious that Kikuzaki's natural product is not a 3-alkylidene-2(3*H*)-furanone.

Scheme 2. Reagents and conditions: (a) MeNHOMe·HCl, Me₃Al, CH₂Cl₂, 0 °C (87%); (b) SOCl₂, py, CH₂Cl₂, -78 °C, (88%); (c) DIBAL, Et₂O, -78 °C (93%); (d) 2(5*H*)-furanone, *n*-Bu₂BOTf, *i*-Pr₂NEt, CH₂Cl₂, -78 °C, then 6, -78 °C, 2 h (95%); (e) Al₂O₃ (1.5 equiv), pyridine, reflux, 8 h (89%); (f) MsCl (4 equiv), Et₃N or *i*-Pr₂NEt (4 equiv), CH₂Cl₂, -78 to 0 °C, 1 h; (g) *i*-Pr₂NEt (5 equiv), CH₂Cl₂, rt, 2 h (63% for 3, ca. 8% for 9, two steps); (h) DBU (ca. 2 equiv), CH₂Cl₂, rt, 15–20 min (90%).

Download English Version:

https://daneshyari.com/en/article/5275890

Download Persian Version:

https://daneshyari.com/article/5275890

Daneshyari.com