

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 7841-7844

Diastereoselective reductive Mannich-type coupling of acrylates and aldimines with Rh(Phebox) catalyst

Hisao Nishiyama,* Junji Ishikawa and Takushi Shiomi

Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan

Received 1 August 2007; accepted 31 August 2007 Available online 11 September 2007

Abstract—The conjugate reduction of α , β -unsaturated esters such as acrylates, crotonate, and cinnamates followed by Mannichtype coupling toward aldimines was efficiently promoted by rhodium-bis(oxazolinyl)phenyl catalyst and alkoxyhydrosilanes to show high *anti*-selectivity up to 99.

© 2007 Elsevier Ltd. All rights reserved.

Mannich reaction is an important and preparative C-C bond forming reaction of enolized carbonyl compounds and imines to produce β -amino-substituted carbonyl derivatives.¹ Especially, adoption of ketene silvlacetals as nucleophiles can provide β -amino esters, which are raw materials essential to β -amino acids and β -lactams. As an attractive alternative method, Matsuda et al. reported rhodium-catalyzed approach to Mannichproducts with α,β -unsaturated esters and hydrosilane (Scheme 1).² In the catalytic reaction, however, the issue of diastereoselectivity, syn:anti, has remained unsolved; anti-selectivity up to 68%. In this context, Isayama demonstrated cobalt catalyzed coupling of crotonate and *N*-methylimine to attain *syn*-selectivity.³ In addition, Morken demonstrated iridium catalyst for coupling between trifluorophenyl acrylate and aldimines to produce β-lactams in trans-selectivity.⁴

As we have recently found highly diastereoselective (*anti-*selective) and enantioselective reductive aldol coupling

Scheme 1.

0040-4039/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.08.135

reactions of α,β -unsaturated esters toward aldehydes or ketones using chiral rhodium-bis(oxazolinylphenyl) [Rh(Phebox)] catalysts and hydrosilanes, we have strongly intrigued to challenge this issue.⁵ We disclose here a new efficient protocol producing β -amino esters with high *anti*-diastereoselectivity.

The reaction of imine **2** and *tert*-butyl acrylate in THF was carried out at 50 °C with 2–5 mol % of Rh(Phebox) catalyst 1^6 to furnish a mixture of diastereomers in 76–79% yields (Scheme 2) (Table 1, entries 1 and 2). Diastereoselectivity resulted in high *anti*-selectivity (18:82). Methyl acrylate decreased the *anti*-selectivity (entry 3), and use of other alkoxyhydrosilanes decreased the yields (entries 4 and 5). Other solvents were examined to decrease catalytic efficiency (entries 6–9).

In turn, substituted imines **4** were subjected to the coupling reaction with *tert*-butyl acrylate under the same condition in entry 1 of Table 1 (Scheme 3 and Table 2). The reaction smoothly took place to give good to excellent yields (65–73%) and high *anti*-selectivity up to 83% for the case of *p*-MeO substituted imine **4a** (entry 1). Substituents at *p*-position of the imines **4d**–**f** weakly influenced the diastereoselectivity (entries 4–6). The reaction with the imines derived from α -naphthoaldehyde and β -naphthoaldehyde gave the corresponding coupling products **6** and **7** in moderate yields, respectively. Aminoester **6** showed high *anti*-selectivity of 90%.

Next, we employed a crotonate and cinnamates as enolate sources (Scheme 4 and Table 3). Eventually, crotonate **8a** selectively provided product **9a** in 80%

Keywords: Mannich reaction; Rhodium; Bisoxazoline; Conjugate reduction.

^{*} Corresponding author. Fax: +81 52 789 3209; e-mail: hnishi@ apchem.nagoya-u.ac.jp

Scheme 2.

Table 1. Reductive Mannich-type coupling of imine 2 and tert-butyl acrylate^a

Entry	Hydrosilane	Solvent	Yield of 3 (%)	Ratio of syn:anti
1	(EtO) ₂ MeSiH	THF	79	18:82
2 ^b	(EtO) ₂ MeSiH	THF	76	18:82
3°	(EtO) ₂ MeSiH	THF	75	27:73
4	(EtO)Me ₂ SiH	THF	74	24:76
5	(EtO) ₃ SiH	THF	69	19:81
6	(EtO) ₂ MeSiH	Toluene	68	20:80
7	(EtO) ₂ MeSiH	DME	71	20:80
8	(EtO) ₂ MeSiH	DMF	34	32:68
9	(EtO) ₂ MeSiH	CH ₃ CN	6	17:83

^a Cat. 1 (0.005 mmol, 1 mol %), 2 (0.5 mmol), acrylate (1.0 mmol), hydrosilane (1.0 mmol), solvent (2.0 mL).

^b Cat. 1 (2 mol %).

^c Methyl acrylate (1.0 mmol) was used in place of *tert*-butyl acrylate.

Scheme 3.

yield with 14:86 of *syn:anti*. Surprisingly, ethyl and isopropyl cinnamates **8c** and **8d** exclusively gave the corresponding *anti*-products **9c** and **9d**, respectively, up to <1:>99 (entries 3 and 4).

As we thus found *anti*-selective Mannich-type coupling, we turned our attention to asymmetric coupling with chiral Rh(Phebox) catalyst **10**. However, we observed no asymmetric induction for the reaction of p-meth-

Download English Version:

https://daneshyari.com/en/article/5275912

Download Persian Version:

https://daneshyari.com/article/5275912

Daneshyari.com