
View synthesis by the parallel use of GPU and CPU

Indra Geys a,*, Luc Van Gool a,b

a Katholieke Universiteit Leuven, ESAT/PSI-VISICS, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
b Swiss Federal Institute of Technology, ETH/BIWI, Sternwartstrasse 7, 8092 Zürich, Switzerland

Abstract

We present an algorithm for efficient depth calculations and view synthesis. The main goal is the on-line generation of realistic inter-
polated views of a dynamic scene. The inputs are video-streams originating from two or more calibrated, static cameras.

Efficiency is accomplished by the parallel use of the CPU and the GPU in a multi-threaded implementation. The input images are
projected on a plane sweeping through 3D space, using the hardware accelerated transformations available on the GPU. A correlation
measure is calculated simultaneously for all pixels on the plane and is compared at the different plane positions. A noisy ‘virtual’ view and
a crude depth map result in very limited time. We apply a min-cut/max-flow algorithm on a graph, implemented on the CPU, to ame-
liorate this result by a global optimisation.
� 2007 Published by Elsevier B.V.

Keywords: View synthesis; Multi-camera; Graphical board; Depth map; Graph-cut

1. Introduction

Given multiple video-streams of a dynamic scene, an
algorithm is presented to create image sequences from
novel viewpoints at interactive rates. A depth map is calcu-
lated on the fly and textures are rendered onto this map to
create the ‘virtual’ view. The input video-streams come
from two or more static calibrated cameras. The work aims
at the development of more advanced tele-working, tele-
teaching and video-conferencing environments. Remote
collaboration, e.g. on product design, becomes much easi-
er. No moving cameras are needed. Instead, camera move-
ments are simulated and the viewpoint can be optimised.

Several approaches can be used to synthesise novel
views. One set of image-based methods is called morphing.
A rectification step, feature matching, image warping and
linear colour interpolation are used to generate the new
view out of other views. One of the first systems was pre-
sented in 1993 by Chen and Williams [1]. Geometrically
valid morphs between views were proposed by Seitz and

Dyer [2] and Werner et al. [3]. Lhuillier and Quan [4] recon-
struct matched planar patches using a homography. After
that, a joint view triangulation is defined to handle partially
occluded areas. The scene is supposed to consist of one
static object. The recent work of Criminisi et al. [5] presents
the generation of a cyclopean1 view of a stereo pair of an
upper body. Their system is based on a dynamic program-
ming algorithm for the generation of the disparity map.

Light field and lumigraph rendering [6,7] form a second
group of methods. A large collection of 2D images are used
to reconstruct a function that characterises the flow of light
through the 3D space. Once this function is known, view
synthesis is quite straightforward as illustrated by Schirm-
acher et al. [8]. However obtaining, transmitting and pro-
cessing such a very dense sampling of the environment
render these methods impractical for dynamic scenes.
Apart from this, the many cameras would also block the
view for a local audience (often present in tele-teaching
applications).

As an example of a third possible solution, Matusik
et al. [9] compute and shade visual hulls [10], from images
of four calibrated cameras. Multiple computers are used

0262-8856/$ - see front matter � 2007 Published by Elsevier B.V.

doi:10.1016/j.imavis.2006.07.023

* Corresponding author. Tel.: +32 0 16 32 10 61; fax: +32 0 16 32 17 23.
E-mail address: igeys@esat.kuleuven.be (I. Geys).
URL: http://www.esat.kuleuven.be/~igeys (I. Geys). 1 Cyclopean means mid-way between left and right input cameras.

www.elsevier.com/locate/imavis

Image and Vision Computing 25 (2007) 1154–1164

mailto:igeys@esat.kuleuven.be
http://www.esat.kuleuven.be/~igeys


for the computation and the rendering. Similarly, polyhe-
dral visual hulls [11] are based on epipolar geometry and
provide view-independent rendering through a mesh and
a texture representation. A visual hull needs a large number
of different views for recovering geometric details and
it cannot recover concave regions no matter how many
images are used. This poses problems for faces, which are
extremely important for our intended applications.

A fourth group of approaches consist of the recon-
struction of a 3D model, and then rendering the model
from the desired view. Debevec et al. [12] use view
dependent texture-mapping, in which the textures are
projected onto the geometry using a ‘view map’ for every
polygon. Recently, Zitnick et al. [13] developed a system
to create even higher quality interpolations. They can
process recorded video-streams of moving objects. How-
ever the depth calculation remains off-line. Only the visu-
alisation of the high-quality intermediate views is done at
interactive rates.

Real-time calculation of depth without the use of dedi-
cated hardware recently became feasible [14–17]. Ansar
et al. [15] use bilateral filtering, while MMX-optimised
code of a three-dimensional similarity accumulator is used
by Schmidt et al. [16]. A plane sweeping algorithm [18] is
described by Yang and Pollefeys [17].

In this research we try to overcome some of the limita-
tions of the aforementioned systems. We want to generate
synthetic views of dynamic scenes on-the-fly. This implies
that per frame off-line preprocessing or depth calculation is
not an option. The process from input images to synthe-
sised views should be performed on-line. Therefore, the
execution speed is of primary importance. In this work we
focus on achieving a balanced load between CPU and
GPU. We also strive for an increased level of automation.
In contrast to earlier work [17], which mainly proved feasi-
bility of GPU accelerated plane sweeping, we make this
process fully automatic and more robust. The search range
for the sweep is adapted from frame to frame without man-
ual intervention. As a side effect, this also provides us with
a rough histogram-based 3D tracking of the foreground (in
our case typically a person) throughout the video-streams.
Last but not least we try to strike a balance between com-
putation time and quality.

The outline of the remainder of the paper is as follows.
In Section 2 we provide a general overview of the system.
Section 3 explains the segmentation algorithm, while Sec-
tion 4 covers radial distortion correction and sparse corre-
spondence search. Section 5 focuses on the GPU-based
plane sweep and Section 6 on the graph-cut based regular-
isation. The actual generation of new views is highlighted
in Section 7. Experimental results are shown in Section 8,
followed by a conclusion in Section 9.

2. Overview of our system

One of the major challenges is to compute a reasonably
accurate depth map given the available time between con-

secutive frames. To accomplish this we make a distinction
between foreground and background. A segmentation algo-

rithm separates both. For the foreground, the computation
time is critical. A more accurate, but slower depth calcula-
tion can be applied to the background, since it is assumed
to be static.

The problem of generating a dense depth map in lim-
ited time is addressed by a combined use of a plane

sweep algorithm implemented on the GPU, followed by
a graph-cut based regularisation on the CPU. Unlike most
stereo algorithms, the depth map is not calculated with
respect to one of the input cameras. Instead, the calcula-
tions are performed relative to the desired ‘virtual’
camera.

The same depth calculation algorithm can be used for
the foreground and the background. However, due to its
larger area and its more extended depth range, the compu-
tation time for the background is higher than for the fore-
ground only. Therefore, we opt to recalculate only the
foreground depth map every frame. For the background,
only the texture is adjusted, to compensate for illumination
changes.

Once the depth map is determined, a triangle mesh is
sampled and rendered in OpenGl. Novel view synthesis is
accomplished by view dependent blending of the textures

on this mesh.
In practice, the algorithms running on the CPU and on

the GPU can be executed in parallel by using a multi-
threaded implementation. As such the next frame can
already be processed by the plane sweep, while the graph-
cut regularisation still runs on the previous one. Fig. 1
shows the consecutive steps of the pipeline from an algo-
rithmic point of view, ignoring the parallelism due to the
multi-threading.

3. Foreground segmentation

The implementation of the segmentation algorithm is
based on a technique for illumination-invariant change
detection in a sequence of images, based upon an appropri-
ate model and a statistical decision criterion [19]. A descrip-
tor vector x is defined for a 3 · 3 neighbourhood of every
image pixel, by concatenating the 27 colour values (3 chan-
nels for 9 pixels). During on-line segmentation, for every
pixel pi this vector xi in the current frame is compared to
the corresponding vector bi of a reference background by
checking for their collinearity. Fig. 2 illustrates this princi-
ple in 2D. It was shown that minimisation of
d2 ¼ ðd2

1 þ d2
2Þ is a more robust test for collinearity than

evaluating the angle [19]. This problem corresponds to
solving a 2 · 2 matrix eigenvalue decomposition, which
can be implemented efficiently. The dependence of the dis-
tance d on the length of the vector, reduces its values for
darker objects, however. Therefore dark objects will be
considered background too easily. Division by the distance
for the vectors under 45 deg. from each other, compensates
for this.

I. Geys, L.V. Gool / Image and Vision Computing 25 (2007) 1154–1164 1155



Download English Version:

https://daneshyari.com/en/article/527610

Download Persian Version:

https://daneshyari.com/article/527610

Daneshyari.com

https://daneshyari.com/en/article/527610
https://daneshyari.com/article/527610
https://daneshyari.com

