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Abstract

We present a spline-based nonrigid motion and point correspondence recovery method for 3D surfaces. This method is based on differential

geometry. Shape information is used to recover the point correspondences. In contrast to the majority of shape-based methods, which assume that

shape (unit normal, curvature) changes are minimum after motion, our method focuses on the nonrigid relationship between before-motion and

after-motion shapes. This nonrigid shape relationship is described by modeling the underlying nonrigid motion; we model it as a spline

transformation, which has global control over the entire motion field along with the local deformation integrated within. This provides our method

certain advantages over some pure differential geometric methods, which also utilize the nonrigid shape relationship but only work on local areas

without a global control. For example, motion regularity is hard to implement in these pure differential geometric methods but is not a problem

when the motion field is controlled by a spline transformation. The orthogonal parameterization requirement of the nonrigid shape relationship has

to be approximated in these previous methods but is easy to meet in our method. Furthermore, the small deformation constraint introduced by the

previous works is relaxed in our method.

Experiments on both synthetic and real motions have been conducted. The quantitative and qualitative evaluations of our method are presented.

The application of our method to the human tongue motion analysis is also presented in this paper.
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1. Introduction

Nonrigid motion estimation is an important research area in

computer visions. It has many applications such as in medical

image registration [4,12,28,30], face modeling [29,33] and

remote sensing [34,35]. Comprehensive reviews of early

nonrigid motion analysis methods can be found in Refs.

[3,18]. Among the numerous motion and correspondence

estimation approaches, shape-based methods have been

extensively studied by several researchers [4,12,15,24,28].

Advantage of shape-based methods compared to other

approaches such as physically based methods [11,25,26] is

that motion is estimated solely from the visual data.

Although shape information provides basis for the motion

and correspondence estimation problem, different constraints

still need to be applied to avoid the motion and correspondence

ambiguity due to the surface complexity and the nonrigid

property of motion. These constraints are usually introduced by

comparing some shape properties such as curvatures and unit

normals, of the before-motion and after-motion surfaces.

Generally, there are two approaches to compare shape

properties: the direct shape-based, and the ‘nonrigid’ shape-

based approach.

Before discussing these two approaches, we first introduce

some notations used in this paper. XZ(x, y, z) denotes the

before-motion surface where (x, y, z) is a point on the surface

X, X 0Z(x 0, y 0, z 0) is the after-motion surface where (x 0, y 0, z 0) is

a point on the surface X 0. n1 and n 0 denote the unit normals of

the before-motion and after-motion surfaces, respectively. k
and k 0 are the curvatures of these two surfaces, respectively. S

denotes the displacement between these two surfaces, i.e. SZ
X 0KX.

1.1. The direct shape-based method

In general, the direct shape-based method assumes among

all possible displacements, the one that minimizes the
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following objective function (or part of it) as the correct

estimate for point correspondences

a1

X
X

fkðXÞKk0ðXCSÞg2Ca2

X
X

jjnðXÞKn0ðXCSÞjj2 (1)

where a1 and a2 are the weighting parameters. Note that in the

above formula, in order to compare normals, one has to either

compute n and n0 in the world coordinate system after the

before-motion and after-motion surfaces have been globally

aligned as in Ref. [24], or compute n and n0 in a local principle

coordinate system as in Ref. [13].

The above objective function is based on the invariance of

the shape properties (unit normal and curvature). In Ref. [30],

this shape invariance is combined with geodesic distance to

determine point correspondences between surfaces. In

Ref. [12] the curvature invariance is used to measure the

motion of deformable objects. The shape invariance properties

are also used in Ref. [13], which is based on the popular

iterative closest point (ICP) algorithm [7,32] registration

method but has been extended to the nonrigid situation.

Some other examples of the direct shape-based method are

Refs. [24,28].

The assumption of the direct shape-based method is that the

shape properties do not change (much) after motion. But

curvature and unit normal are only rigid invariants; in nonrigid

motion situation, shape properties vary, making the rigid

motion assumption invalid.

1.2. The nonrigid shape-based method

Different from the direct shape-based method, the nonrigid

shape-based method [15–17,19] starts from shape relationships

between the before-motion and after-motion surfaces. The

relationships are not based on simple invariance, but they are

based on the underlying nonrigid motion and geometric

properties of surfaces (we call this kind of shape relationship

as nonrigid shape relationship). Among given correspondence

hypotheses on the after-motion surface, the nonrigid shape-

based method tries to find the corresponding point for each

point on the before-motion surface by selecting the hypothesis

which best fits a pre-defined nonrigid motion model. Fig. 1

shows all correspondence hypotheses of a point, P on a surface

S, which has undergone nonrigid motion to map on S 0. Point P

can correspond to any point within some region, R (the gray

area in Fig. 1). R is the region checked for point

correspondences. It is defined as a small window around the

position of the point before the motion by the small motion

assumption. In the estimation of motion parameters, these

previous nonrigid shape-based methods also consider the

neighborhood points for the error computation. That is local

patches at each point under consideration. Thus, the mapping

of a set of neighboring points, Pi onto another set P
0
i is assumed

to satisfy the nonrigid relationship between two points P and

some point P 0. However, the nonrigid shape relationship is

valid only between point P and P 0 since this relationship is

valid in the condition of orthogonal parameterization (see

Section 2 for the definition of orthogonal parameterization) and

the parameter orthogonality can only be guaranteed at point P

by constructing a local coordinate around P. Parameter

orthogonality of neighboring points of P is not guaranteed in

the constructed local coordinate around P. Most of the previous

nonrigid shape-based methods [15–17] omit this problem and

assume the orthogonal parameterizations of these neighboring

points. The nonrigid shape relationship between P and P 0 is

directly applied to the neighboring points of P. Though in

Ref. [19] a curvilinear orthogonalization method is presented,

the recovered motion in this paper is limited to local affine

motion.

The shape relationship used in the nonrigid shape-based

method is described in a local coordinate system. Thus, the

motion models in Refs. [15–17,19] are all defined in different

local coordinate systems for different points on the before-

motion surface. These definitions introduced two problems.

First, the motion defined in the local coordinate system has no

explicit physical meaning. Second, the motion consistency over

the entire motion field as a whole cannot be guaranteed with

local motions defined in different local coordinate systems.

1.3. Our approach

Our approach is based on previous nonrigid shape-based

methods [15–17,19]. We still utilize the nonrigid shape

relationship defined in the local coordinate system around

each point of interest. But instead of using the local motion

model which means different motion models are defined for

different points of interest on the before-motion surface, we

model the nonrigid motion of all points of interest on the

before-motion surface with a single GRBF (Gaussian Radial

Basis Function) transformation (which is a spline transform-

ation) that is defined in the world coordinate system. The

nonrigid motion recovery problem is solved by estimating the

parameters of a single GRBF [21]. Unlike the previous

nonrigid shape-based methods [15–17,19] in which neighbor-

ing points around each point of interest are required to estimate

Fig. 1. The previous nonrigid shape-based method.
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