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Abstract

Many natural image sets are samples of a low-dimensional manifold in the space of all possible images. When the image data set is not a linear

combination of a small number of basis images, linear dimensionality reduction techniques such as PCA and ICA fail and non-linear

dimensionality reduction techniques are required to automatically determine the intrinsic structure of the image set. Recent techniques such as

ISOMAP and LLE provide a mapping between the images and a low-dimensional parameterization of the images. This paper specializes general

manifold learning by considering a small set of image distance measures that correspond to key transformation groups observed in natural images.

This results in more meaningful embeddings for a variety of applications.
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1. Introduction

Faster computing power and cheap large-scale memory

have led to a surge in research in the machine learning

community on the topic of dimensionality reduction, which

finds structure in a large set of points embedded in a very high-

dimensional space. Many problems in computer vision can be

cast in this framework, as each image can be considered to be a

point in a space with one dimension for each pixel. When an

image data set is generated by varying just a few parameters,

such as a combination of pose, lighting, or camera viewpoints,

then this set can be considered to be sampling a continuous

manifold of the space of all possible images. Given a set of

images, understanding this manifold and automatically

parameterizing each image by its place on this manifold has

emerged as an important tool in the model-free interpretation

of image data.

Especially for the analysis of the variation in images of a

single object, this approach was long foretold:

In a very large part of morphology, our essential task lies in

the comparison of related forms rather in the precise

definition of each; and the deformation of a complicated

figure may be a phenomenon easy of comprehension,

though the figure itself may have to be left unanalyzed and

undefined. —D’Arcy Thompson [11]

Algorithms for inferring properties of image manifolds by

comparing related images have been codified in a family of

computational techniques exemplified by Isomap [10] and

locally linear embedding (LLE) [8]. These techniques extend a

sparse set of local relationships between similar images to a

global low-dimensional parameterization of all images. This

work uses Isomap as an exemplar of this class of non-linear

dimensionality reduction tools, and the results will directly

apply to other methods including semidefinite embedding [14],

and could be extended to LLE, alignment of local represen-

tations (LLC) [9], and Hessian Eigenmaps [4].

The main contribution of this paper is to explore the

application of Isomap to video imagery, and to guide the

process of specializing Isomap for particular problem domains.

Several earlier papers have visualized the parameterization of

image sets and observe that it highlights perceptually relevant

features. Here, we emphasize that the parameterization

produced by Isomap is a function of the input data set and

the image distance metric.

A formal theory of the statistics of natural images and

natural image variations—pattern theory—gives tools for

defining relevant image distance metrics. We postulate that

for natural image data sets, a small number of distance metrics
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are useful for many important applications. This paper

proposes a set of distance measures that correspond to the

most common causes of transformation in image sets and gives

examples of how these significantly improve performance on a

variety of application domains, including the de-noising of

cardiac MR imagery.

2. Differential structure in dimensionality reduction

Dimensionality reduction is an important tool in image data

analysis, because images are large, and when treated as a vector

of pixel intensity values, lie in a very high-dimensional space.

Here, we give a brief introduction to Isomap as one tool for

non-linear dimensionality reduction. This is explicitly

compared with linear dimensionality reduction as typified by

principal components analysis (PCA). We argue that PCA is

poorly suited to the analysis of many natural image sets,

especially those which include motion. We then consider the

structure of both Isomap and PCA embeddings.

2.1. Background of Isomap

Given an input set I, which is a finite subset of RD, (where

D is the number of pixels in an image), the dimensionality

reduction techniques of Isomap and LLE produce a mapping

function f :I/Rd. Very briefly, Isomap begins by computing

the distance between all pairs of images (using the square root

of the sum of the squared pixel errors, which is the L2 norm

distance if the images are considered points in RD). Then, a

graph is defined with each image as a node and undirected

edges connecting each image to its k-closest neighbors (usually

choosing k between 5 and 10). A complete pair-wise distance

matrix is calculated by solving for the all-pairs shortest paths in

this sparse graph. Finally, this complete distance matrix is

embedded into Rd, by solving an eigenvalue problem using a

technique called multidimensional scaling (MDS) [3]. d is the

dimension of the low-dimensional embedding and can be

chosen as desired, but, ideally, is the number of degrees of

freedom in the image set. LLE is a method with similar aims

that creates a mapping that preserves linear relationships

between nearby points. The original papers for Isomap [10] and

LLE [8] have pointers to online, free implementations of the

algorithm, a tradition which has been continued for the

successors of these algorithms, including Hessian Eigenmaps

[4], Laplacian Eigenmaps [1], and semidefinite embedding

[14].

Isomap has several very important limitations. First, the

Isomap algorithm defines a mapping from the original image

set to Rd. That is, Isomap computes a mapping f :I/Rd and

not, as might be more convenient, f :RD/Rd. This means that

once the Isomap embedding of an image set I is computed, for

I 0;I the value of f(I 0) is not well defined. Additionally, the

inverse mapping is also problematic. For a point x2Rd, if x is

not in the set of points defined by f ðIÞ, then fK1(x) is also not

well defined. Although approaches have been proposed to

compute these ‘out of sample’ projections [2], this remains,

both theoretically and practically, a challenge for Isomap and

other dimensionality reduction techniques.

2.1.1. Comparison to PCA

It is instructive to view PCA in the same light. Given an

input set of images I (still a finite subset of RD), principal

component analysis computes a function f which projects each

image onto a set of basis images. The image set, I, is used to

derive a set of orthonormal basis images ðb1;ðb2;.;ðbd, and then

the function f which maps an image x in RD to a set of

coefficients in Rd is:

f ðxÞZ ðx u ðb1;x
u ðb2;.;xTðbdÞZ ðc1;c2;.;cdÞ

Therefore, although the basis images are defined based upon

an Eigen-analysis of the image data set I, the function f is

defined for all possible images of D pixels:

fPCA:R
D/Rd

In addition to being more computationally efficient, the

projection function f of PCA remains well defined for images

that are not present in the original set I. Also, the inverse

function is defined as well, so that any point in the coefficient

space can be mapped to a specific image by a linear

combination of basis images:

fK1
PCAðc1;c2;.;cdÞZ c1ðb1 Cc2ðb2 C/Ccd ðbd (1)

Differential changes to the coefficients correspond to

changes in weights of the linear basis functions. Consider an

image x with corresponding coefficients (c1, c2,., cd). The

partial derivative of the inverse mapping function (Eq. (1))

describes how the image varies when changing the ci
coefficient:

v

vci
fK1
PCAðc1;c2;.;cdÞZ ðbi

Equivalently, moving through the coefficient space can be

interpreted as an operator: changing coefficient ci by e changes

the image x by the addition of the bi basis image: x0ZxCeðbi.
However, this is not usually the type of image change that

underlies natural image variations. Natural changes to images,

for example, those due to variation in pose or shape

deformations, are very poorly approximated by changes in

linear basis functions. Fig. 1 shows the PCA decomposition of

an icon moving smoothly from left to right. Despite the fact

that this image set has only one degree of freedom, it takes

many principal components to reconstruct any of the original

images effectively. This leads to the question: what local

variations dominate the relationships between similar images

in natural settings?

2.2. Differential structure in image manifolds

Non-linear dimensionality reduction, despite its drawbacks,

has been successful at finding natural parameterizations, or

‘perceptual organizations’ [10], of a variety of different image

sets, including pose estimates in rigid body motions [7],
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