ELSEVIER

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Hydro-amination/-amidation of 1,3-diynes with indoles/azoles/amides under modified Ullmann conditions: stereo- and regio-selective synthesis of N-alkenynes via N-H bond activation $^{\diamond}$

Sahaj Gupta, Piyush K. Agarwal, Mohammad Saifuddin, Bijoy Kundu*

Medicinal and Process Chemistry Division, Central Drug Research Institute, CSIR, Lucknow 226 001, India

ARTICLE INFO

Article history:
Received 29 June 2011
Revised 11 August 2011
Accepted 14 August 2011
Available online 26 August 2011

Keywords: 1,3-Butadiyne N-Alkenynes Ullmann condition Indole Azole Amides

ABSTRACT

An efficient strategy for the stereo- and regio-selective synthesis of N-alkenynes has been described. The salient feature of the reaction involves hydro-amination/amidation of 1,3-diynes with indoles/azoles/amides via transition-metal catalyzed activation of N-H bond. The resulting N-alkenynes derived from N-heterocycles and cyclic amides were obtained as a mixture of Z/E isomers with Z-stereoselectivity ranging from 60% to 95%. In contrast, acyclic amides afforded N-alkenynes with exclusive E-stereoselectivity, albeit in reduced yield ranging from \sim 10% to 41%.

© 2011 Elsevier Ltd. All rights reserved.

In recent years transition-metal catalyzed functionalization reactions of unreactive N–H or C–H bonds especially in N-heterocycles have received significant attention in modern organic chemistry. Among N-heterocycles, indoles scaffolds are ubiquitous subunits of a variety of biologically active substances and have been grouped under privileged structures. The N–H center in the indole has a pK_a of 21 in DMSO 2 thereby requiring very strong bases under anhydrous conditions for complete deprotonation. In recent years although there are several reports dealing with the transition-metal catalyzed intermolecular direct regioselective functionalization of either NH or C2/C3–H in indole, reports dealing with the hydroamination of diynes with indoles has not yet been investigated. This is in contrast to several reports dealing with the metal-catalyzed addition of heterocyclic-, primary- and secondary-amines onto terminal and internal alkynes.

During the course of our reaction involving indole **1a** with terminal alkynes under modified Ullmann conditions,⁵ we came across an interesting observation wherein the formation of 1,3-diyne **2a** and regioselective formation of 1-(1,4-diphenylbut-1-en-3-ynyl)-1*H*-indole **3a** occurred in 27% and 18% yield, respectively. The century old Cu-catalyzed Ullmann condensations,⁶ have been widely used for the arylation of aryl/alkyl amines, amides, imides, carbamates, *N*-heterocycles, alkynes, synthesis of

enamides/ynamides/allenamides, and for the yne-yne bond formation.7 We hypothesized that under the modified Ullmann conditions, the terminal alkynes initially underwent dimerization to form symmetrical 1,3-diyne 2a followed by hydroamination preferably (in the presence of activated C-2 and C-3 nucleophile in **1a**) with the *N*-1 of the indole ring to form *N*-alkenyne **3a**. The poor vields of **2a** and **3a** can be attributed to the unfavorable reaction condition for the formation of 1,3-diynes 2a from terminal alkynes. A careful survey of the literature did not reveal any report dealing either with the hydroamination of 1,3-divnes with indoles or with the synthesis of N-alkenynes per se except for a recent report dealing with the synthesis of S-alkenynes.8 This prompted us to optimize the conditions for the formation of 3 from 1,3-divnes 2 in quantitative yields. The studies are in continuation of our effort to synthesize indole-based derivatives⁹ for our ongoing antimalarial program.¹⁰ In our initial experiments, we examined the ability of phenylacetylene alone to form 1,3-diyne 2a under the modified Ullmann condition (Cul/Ligand/Cs₂CO₃). As expected, the formation of 2a occurred in poor (30%) yield, which then prompted us to choose the Cu-catalyzed literature procedure for the formation of 2 in quantitative yields. Out of the numerous protocols reported for the synthesis of 1,3-diynes from terminal alkynes, the use of Cul/Na₂CO₃/I₂¹¹ was found to be the most favorable, furnishing **2a-d** in excellent yields (Table 1). Next, we treated **2a** (1.0 mmol) with indole 1a (1.0 mmol) and Cs₂CO₃ (1.5 mmol) in DMSO at 100 °C for 5 h. This resulted in the formation of **3a** (entry 1; 83% yield) as a mixture of Z and E isomers in the ratio of 6:4 as observed

[☆] CDRI Communication No. 8110.

^{*} Corresponding author. Tel.: +91 522 2612411/18x4383; fax: +91 522 2623405. E-mail addresses: bijoy_kundu@yahoo.com, b_kundu@cdri.res.in (B. Kundu).

Table 1Synthesis of 1,3-diynes **2** from respective alkynes

Compound no.	Alkyne	1,3-Diyne	Yield (%)
2a			95
2b			90
2c	—	\	91
2d	o-<>	<i>></i> -€\<	90

Table 2
Optimization of the reaction conditions for conversion of substrate 1a and 2a to 3a

S. No.	Reagent	Solvent	3a
1	Cul/Cs ₂ CO ₃ ; 100 °C	DMSO	83%
2	CuI/1,10-phenanthroline/Cs ₂ CO ₃ ; 100 °C	DMSO	90%
3	CuI/L-proline/Cs ₂ CO ₃ ; 100 °C	DMSO	N.R
4	CuI/L-4-hydroxyproline/Cs ₂ CO ₃ ; 100 °C	DMSO	N.R
5	CuI/1,10-phenanthroline/Pot. t-butoxide; 100 °C	DMSO	41%
6	CuI/1,10-phenanthroline/DABCO; 100 °C	DMSO	N.R
7	CuI/1,10-phenanthroline/Na ₂ CO ₃ ; 100 °C	DMSO	N.R
8	CuI/1,10-phenanthroline/Cs ₂ CO ₃ ; 80 °C	ACN	N.R
9	CuI/1,10-phenanthroline/Cs ₂ CO ₃ ; 80 °C	THF	N. R
10	CuI/1,10-phenanthroline/Cs ₂ CO ₃ ; 100 °C	DMF	85%
11	CuI/1,10-phenanthroline/Cs ₂ CO ₃ ; 80 °C	DMSO	22%

by both HPLC and NMR. Attempts to improve the stereoselectivity/ yields during hydroamination with $\bf 3a$ as a probe (Table 2) using various ligands such as 1,10 phenanthroline, L-proline, and *trans*-4- hydroxy-L-proline, led to marginal increase in the yield of $\bf 3a$ from 83% to 90% when 1,10-phenanthroline was used in combination with CuI and Cs_2CO_3 in DMSO at $100\,^{\circ}C$ (entry 2). The remaining two ligands were inactive (entries 3 and 4). Replacing Cs_2CO_3 with bases such as DABCO, Na_2CO_3 , and potassium t-butoxide were ineffective except for potassium t-butoxide furnishing $\bf 3a$ in 41% yield (entry 5).

$$R^{1} \stackrel{\frown}{-} A \stackrel{\frown}{\longrightarrow} N \\ H \\ Indole; X=C; A=Ph \\ Imidazole; X=N \\ Pyrrole; X=C \\ 2a-d \\ 2a-d \\ 3a-w \\ R^{2}$$

$$1a = Indole \\ 1b = 5-methoxyindole \\ 1c = 5-bromoindole \\ 1d = 5-benzyloxyindole \\ 1d = 5-benzyloxyindole \\ 1d = 2-methylimidazole \\ 1f = 2-isopropylimidazole \\ 1f = 2$$

Scheme 1. Reagents and conditions: (i) Cul (0.1 mmol), 1,10-phenanthroline

1q = 2-phenylimidazole

1j = Pyrrole

1h= 2-methyl-4-ethylimidazole **1i =** 3,5-dimethyl-1*H*-pyrazole

(0.05 mmol), Cs₂CO₃ (1.5 mmol) in DMSO, 100 °C, 5-16 h.

Replacing DMSO with solvents like acetonitrile (entry 8) and THF (entry 9) were found to have detrimental effect, however, use of DMF as solvent furnished product **3a** in 85% yield (entry 10). It is interesting to note that although use of ligand led to a marginal improvement in the yield, the *Z/E* stereoselctivity ratio of **3a** obtained for entry 2 as well as for entries 5 and 10 with reduced yield remained unchanged (6:4). Besides, the role of solvent and base, the reaction temperature was also found to be an important factor in the hydroamination process. At 100 °C, the reaction went to completion within 5 h and afforded the product in higher yield, however, at reduced temperature of 80 °C, the reaction was incomplete after 5 h and furnished **3a** in reduced yield (22%; entry 11). Thus, the optimal condition for hydroamination involved Cul/1,10-phenanthroline/Cs₂CO₃ in DMSO at 100 °C.

The role of copper in the hydroamination of 1,3-diyne appears to be crucial since it could be activating either of the two reactants. Based on literature precedence, 12 the two plausible mechanistic pathways for hydroamination could be either activation of the alkyne or N-H activation. However, based on our observation that N-protected indole failed to furnish either C-3 or C-2 linked alkenynes, the activation of N-H appears to be the most probable route for hydroamination. The amine activation mechanism may proceed via oxidative addition of the amine N-H bond to the coordinatively unsaturated metal center to form an amido-hydrido complex, followed by one of the acetylenic coordination from 1,3-diyne 2a, insertion of the alkyne into the metal-nitrogen bond, and finally C-H reductive elimination, liberating the product and closing the catalytic cycle. Although, there is no experimental evidence for this reaction, a recent work by Ribas et al., 13 demonstrated direct evidence for the role of Cu^I/Cu^{III} redox steps in Ullmann-type coupling reactions.

Once the reaction conditions for the formation of 3a under the modified Ullmann conditions were optimized,14 we then proceeded with the characterization of isomers. Initial attempts to separate the isomers by column chromatography were not successful which prompted us to separate them by crystallization. Pleasingly, we were able to separate the isomers of 3a by subjecting the crude mixture to crystallization using DCM/EtOH as solvents. The stereochemistry of the pure isomer so obtained was established as Z-isomer using ¹H, 2D NMR, and NOE studies. Further it is interesting to note that under the modified Ullman conditions, we observed regioselective formation of N-alkenynes with no formation of C2 or C3 alkenynes. We next examined the scope and limitation of our strategy for the preparation of N-alkenynes **3** by extending the methodology to a series of *N*-heterocycles. Accordingly, several indole derivatives with the substitution on the phenyl ring, imidazole derivatives, and pyrazole were treated with symmetrical 1,3-diynes 2a-d (Scheme 1) and the results have been summarized in Table 3. As is evident, addition of 1,3-diynes to indoles (1a-d), imidazoles ((1e-h), and pyraozle (1i) derived substrates furnished N-alkenynes 3a-w as a mixture of Z/E in excellent yields. Indeed, the time required for the completion of

Download English Version:

https://daneshyari.com/en/article/5276684

Download Persian Version:

https://daneshyari.com/article/5276684

<u>Daneshyari.com</u>