Tetrahedron Letters 52 (2011) 5827-5830

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

HClO₄-supported on silica gel: a mild and efficient catalyst for Hosomi–Sakurai reaction

Kaliyappan Murugan, Chinpiao Chen*

Department of Chemistry, National Dong Hwa University, Soufeng, Hualien 974, Taiwan, ROC

ARTICLE INFO

ABSTRACT

Article history: Received 17 June 2011 Revised 19 August 2011 Accepted 24 August 2011 Available online 31 August 2011

Keywords: Hosomi–Sakurai reaction Brønsted acids Allylation Homoallylic ether Perchloric acid

The allylation of carbonyl compounds and acetals using allyltrimethylsilane in the presence of Lewis or Brønsted acids is called a Hosomi-Sakurai reaction,¹ which is an important carbon-carbon bond forming reaction in organic synthesis.² From a synthetic perspective, the allylation of acetals or ketals has been extensively explored compared to the free carbonyl compounds using Lewis acid catalysts.³ However, this synthetically important transformation using Brønsted acid catalysts⁴ has been less explored. The allylation of acetals is a useful method to generate homoallylic ethers and can be catalyzed by several Lewis acids. However, numerous acetals are not commercially available and have to be prepared from the corresponding aldehydes. In addition, most of these Hosomi-Sakurai reactions give the homoallyl alkyl ethers that require harsh conditions to be cleaved. Additionally, a direct approach prepares the homoallylic ethers from the corresponding carbonyl compounds with the silvl ether or the corresponding alcohol and an allylsilane. Catalysts that have been employed for such three-component Hosomi-Sakurai reactions using alkoxysilanes include Lewis acids such as Fe(OTs)₃⁵, Ph₂BOTf,⁶ TMSOTf,⁷ TMSOFs,⁸ TMSOMs,⁹ FeCl₃,³ⁱ TMSI,¹⁰ and Bi(OTf)₃.¹¹ Some of these methods have potential drawbacks such as higher catalyst loading, lower yields, and longer reaction time. Furthermore, many of these catalysts are expensive, toxic, and moisture sensitive, and require stringent anhydrous reaction conditions or low temperatures.

Brønsted-acid-catalyzed direct allylation of carbonyl compounds the available method was reported by List,⁴ⁱ where 2,4-dinitrobenzenesulfonic acid was used as the catalyst. In the List's method, benzyl trimethyl silyl ether afforded the best results in comparison to that of benzyl alcohol together with carbonyl compounds. The continued interest in asymmetric allylation¹² of carbonyl compounds and the replacement of conventional Brønsted acid catalysts with more selective, acidic, and greener solid acid catalysts for various functional group transformations¹³ leads to explore the direct allylation of carbonyl compounds. Perchloric acid supported on silica gel was found to be a promising catalyst for numerous synthetically relevant organic transformations.¹⁴ The advantages of this catalyst method include high efficiency, and low-cost. Herein, this study reports the Hosomi-Sakurai allylation of aldehydes in the presence of perchloric acid supported on silica gel.

Perchloric acid supported on silica gel was found to be an efficient catalyst (2 mol %) for the Hosomi-

Sakurai allylation of numerous aldehydes with allyltrimethylsilane in the presence of benzyl alcohol. This

method was also effective for the allylation of secondary alcohols under mild experimental conditions.

Initially, this study investigated the Hosomi–Sakurai allylation of benzaldehyde as a model substrate with allyltrimethylsilane and benzyl alcohol in the presence of silica gel supported perchloric acid (Scheme 1, Table 1). A high yield of homoallyl benzyl ether **1a** (90%) in a short reaction time was achieved in the

Scheme 1. HClO₄–SiO₂-catalyed Hosomi–Sakurai reaction of benzaldehyde, benzyl alcohol, and allyltrimethylsilane.

© 2011 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +886 3 863 3597; fax: +886 3 863 04750. *E-mail address:* chinpiao@mail.ndhu.edu.tw (C. Chen).

^{0040-4039/\$ -} see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.08.145

Table 1

Catalyst and solvent screening

		TMS Benzyl alcohol 4-Silica gel (x mol%) Solvent	OE 1a	ân
Entry	Cat (\times mol %)	Solvent	Time (min)	Yield ^a (%)
1	2	CH₃CN	30	90
2	2	DCM	240	90
3	2	Toluene	720	5
4	2	THF	720	NR
5	5	CH ₃ CN/DCM (1:1)	10	95
6	4	CH ₃ CN/DCM (1:1)	10	95
7	3	CH ₃ CN/DCM (1:1)	20	96
8	2	CH ₃ CN/DCM (1:1)	20	94
9	1	CH ₃ CN/DCM (1:1)	30	89
10	2	CH ₃ CN/DCM (6:4)	20	92
11	2	CH ₃ CN/DCM (7:3)	20	97
12	2	CH ₃ CN/DCM (8:2)	20	90

^a Isolated yields.

presence of 2 equiv of benzyl alcohol in acetonitrile using a 2 mol % of the catalyst. To further optimize the reaction solvent and prevent undesired impurities, several solvents were examined. Among the various solvents employed, dichloromethane provided a better yield compared to that of acetonitrile, but required a longer reaction time for complete conversion. Only traces of product were observed in toluene, and in THF the reaction failed to occur. Surprisingly, a mixture of acetonitrile and dichloromethane (1:1) increased the product yield to 94% and lowered the reaction time (Table 1, entry 8). Further tuning of the catalyst loading and the CH₃CN-DCM ratio identified (Table 1, entries 5–12) the optimal condition as a 7:3 ratio of CH₃CN and DCM solvent system and a 2 mol % of the catalyst at room temperature.

Having determined the optimal experimental conditions, the HClO₄–SiO₂-catalyzed allylation of a broad number of aldehydes was then examined (Table 2). The reaction of isomeric tolualdehydes and 4-tert-butylbenzaldehyde provided the homoallyl ethers (1b-1e) in a high yield (entries 2 and 3). Similar results were observed from aldehydes containing electron withdrawing (halogens, NO₂, CN) and releasing (OMe) groups (entries 4–9). The position of substituents on the aryl ring did not affect the yield of the reaction, as observed in the aforementioned substrates. Interestingly, cyanosubstituted benzaldehydes provided the desired homoallyl ether 1p and 1q in good yields without the potential byproducts of hydrolysis and a Ritter reaction (entry 8).¹⁵ Though methoxy substituted (ortho and meta) benzaldehydes reacted in similar to provide homoallyl ethers **1r** and **1t** in high yields, *p*-anisaldehyde provided a 1:1 mixture of the desired homoallyl ether **1s** and the diallyl derivative **3** (entry 9). All attempts to avoid the byproducts failed. Di- and trisubstituted benzaldehydes, irrespective of the nature of the substituents, were also equally effective and provided the corresponding allylated products (1u-1w) in good to excellent yields (entries 10–12). Compound 3 was obtained perhaps because the desired product **1s** was converted to an intermediate (**2**) and then reacted with allyltrimethylsilane to yield the product (3) that was ultimately obtained (Scheme 2). The diallylation did not occur in compound **1r** that might be the intramolecular hydrogen bonding between methoxy and benzoxy groups (4), and inhibited the formation of compound 5. The 3,4-dimethoxy compounds 1u and 1v might form the intramolecular hydrogen bonding like

Table 2		
T1 11010	<u> </u>	

The HClO ₄ -SiO ₂ -catalyzed	allylation o	f aldehydes ¹⁶

Entry	Product	Time (min)	Yield ^a (%)
	OBn		
1		15	97
	1a		
	OBn 1b : <i>o</i> -isomer	45 30	90 92
2	1c: <i>p</i> -isomer	30	88
	1d: <i>m</i> -isomer		
	OBn		
		60	
3		60	98
	t-Bu OPp	20	05
		30	98
4	1g : <i>p</i> -isomer	30	98
	Cl 1h: <i>m</i> -isomer		
	OBn	30 10	90 99
5	1i: n-isomer	10	00
	OBn 1k : n-isomer	20	99
		30	98
6			
	F		
	OBn 1m : <i>o</i> -isomer	60 60	90 95
7	1n: <i>p</i> -isomer	30	98
	NO ₂ 10: <i>m</i> -isomer		
	OBn , .	30	95
	1p: p-isomer	60	90
8	1q : <i>m</i> -isomer		
	CN		
	OBn 1r : <i>o</i> -isomer	30 15	90 80 ^b
9	1s : <i>p</i> -isomer	15	91
	OMe 1t : <i>m</i> -isomer		
	OBn		
10	MeO 1u	10	96
	OMe		
	NO ₂ OBn		
11	MeO 1v	15	86
	OMe		
	OBn		
12			
	U 1w	30	70
	NO ₂		

Download English Version:

https://daneshyari.com/en/article/5276702

Download Persian Version:

https://daneshyari.com/article/5276702

Daneshyari.com