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Sparse coding represents a signal sparsely by using an overcomplete dictionary, and obtains promising
performance in practical computer vision applications, especially for signal restoration tasks such as
image denoising and image inpainting. In recent years, many discriminative sparse coding algorithms
Keywords: have been developed for classification problems, but they cannot naturally handle visual data repre-
Image annotation sented by multiview features. In addition, existing sparse coding algorithms use graph Laplacian to model
Hessian the local geometry of the data distribution. It has been identified that Laplacian regularization biases the
Multiview . . . . . .
Sparse coding solution tow§r(.is a const.ant fgncFlop W.thh possibly l.eads to poor extra.ipolatmg power. In this paper, we
present multiview Hessian discriminative sparse coding (mHDSC) which seamlessly integrates Hessian
regularization with discriminative sparse coding for multiview learning problems. In particular, mHDSC
exploits Hessian regularization to steer the solution which varies smoothly along geodesics in the man-
ifold, and treats the label information as an additional view of feature for incorporating the discriminative
power for image annotation. We conduct extensive experiments on PASCAL VOC'07 dataset and demon-
strate the effectiveness of mHDSC for image annotation.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Due to the prodigious development of sensors such as cameras
and microphones, people can exploit huge amounts of high dimen-
sional data carrying particular kinds of information. Considering
the redundancy of these high dimensional data for a particular
intelligent task, such as object categorization and human behav-
iour analytics, it is essential to properly represent the relevant
information to reveal the underlying process of these observations.

Sparse coding aims to learn a dictionary and simultaneously
find a sparse linear combination of atoms from this dictionary to
represent the observations (e.g. images and image features). It
has received growing attentions because of its flexibility and prom-
ising performance for many computer vision applications, such as
image denosing [1] and inpainting [4].

In recent years, dozens of sparse coding algorithms have been
developed and these algorithms can be grouped into the following
five categories: reconstructive sparse coding, supervised sparse
coding, discriminative sparse coding, structured sparse coding
and graph regularized sparse coding.

(1) Reconstructive sparse coding: Reconstructive sparse coding
methods learn the optimal dictionary and find the corre-
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sponding sparse representation by minimizing the data
reconstruction error. The representative optimization meth-
ods for sparse representation include matching pursuit [16],
orthogonal matching pursuit [19] and basis pursuit [3].

(2) Supervised sparse coding: Supervised sparse coding meth-

ods exploit the label information to learn an over-completed
dictionary and the corresponding sparse representation for
classification tasks. Pham and Venkatesh [20] considered
the class label and the linear predictive classification error
and proposed a joint framework of dictionary construction
and classification. Zhang and Li [29] incorporated the labels
directly into the sparse coding stage and proposed a discrim-
inative K-SVD (D-KSVD) method to retain the separability.
Jiang et al. [13] extended D-KSVD by integrating both labels
and classification error.

(3) Discriminative sparse coding: Discriminant analysis [38,39]

plays an important role for classification problems. In con-
trast to supervised sparse coding which straightforwardly
exploit the class label information, discriminative sparse
coding methods incorporate class separability criterion into
the objective function. Popular class separability criteria
include softmax function [15], Fisher discrimination crite-
rion [24], and hinge loss [18]. Mairal et al. [15] used the clas-
sical softmax discriminative cost function to leverage
the sparse coding. Yang et al. [24] introduced Fisher’s dis-
criminative criterion to sparse coding to ensure the sparse
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representations have large between-class scatter but small
within-class scatter. Lian et al. [18] proposed a max-margin
sparse coding method which combined the hinge loss func-
tion with sparse coding.

(4) Structured sparse coding: Structured sparse coding methods
naturally extend reconstructive sparse coding by exploiting
the structure sparsity such as group sparsity [28] and hierar-
chical sparsity [11]. Yuan and Lin [28] extended Lasso to
group Lasso which considered group/block structured
dependencies among the sparse coefficients. Jenatton et al.
[11] employed hierarchical sparsity-inducing norms to learn
a hierarchical dictionary which solved tree-structured
sparse decomposition problems. Jia and Salzmann [12]
exploited structured sparsity to learning a latent space of
multiview data.

(5) Graph regularized sparse coding: Graph regularized sparse
coding methods use graph regularization to exploit the local
geometry of the data distribution. Graph Laplacian is a rep-
resentative graph regularization. Zheng et al. [30] used
graph Laplacian to exploit the local geometry of the data dis-
tribution by adding a Laplacian regularization (LR) to the
sparse coding framework. Gao et al. [8] proposed hyper-
graph Laplacian regularized sparse coding to preserve the
local consistence in the feature space.

Although the aforementioned sparse coding algorithms have
obtained promising performance for various applications such as
clustering, classification, and dimensional reduction, they share
some of the following two major problems for image annotation:

(1) Since it is expensive to label a large number of images for
training a robust model, manifold assumption based semi-
supervised learning (SSL) has been introduced to integrate
both a small number of labelled images and a large number
of unlabelled images to improve the performance of image
annotation. LR is one of the most representative works in
which the geometry of the underlying manifold is deter-
mined by the graph Laplacian. Although LR achieved top
level performance for image annotation, it suffers from lack-
ing of extrapolating power. It has been identified that LR
biases the solution towards a constant function due to its
constant null space, which possibly leads to poor extrapola-
tion capability [14].

(2) The aforementioned sparse coding methods are only appli-
cable to images that are represented by single view features.
However, in image annotation, images are often described
by multiview features. Different views (or equivalently
visual features), such as colour histogram, edge sketch and
local binary patterns (LBP), characterize different properties
of an image [7,17,21]. Each view of a feature describes a spe-
cific property of the image, and the weaknesses of a particu-
lar view can be reduced by the strengths of others. Although
we can concatenate different features into a long vector, this
concatenation strategy cannot efficiently explore the com-
plementary of different features because it improperly treats
different features carrying different physical characteristics.
Therefore, compared to single view feature, multiview fea-
tures provide more characteristics of images and can signif-
icantly leverage the performance especially when features
for different views are complementary to one another
[37,40-43].

To address these problems, we present multiview Hessian dis-
criminative sparse coding (mHDSC) in this paper. Particularly,
mHDSC can well leverage multiview sparse coding by seamless
integrating Hessian regularization with discrimination. According

to proposition 1 in [14], the geodesic function in null space of
Laplacian is no other than a const, which implicates that LR biases
the solution towards a constant function and then leads to poor
extrapolation capability. In contrast to Laplacian, Hessian has ri-
cher null space and drives the solution varying smoothly along
the manifold. Hessian regularization (HR) is more preferable for
exploiting the local geometry than LR. Kim et al. [14,36,37] has
demonstrated the excellent performance of HR in regression and
classification problems. The proposed mHDSC has the following
advantages: (1) mHDSC incorporates multiview features into
sparse coding, which effectively explores the complementation of
different features from different views; (2) mHDSC treats the label
information as an additional view of feature, which well boosts the
discrimination without adding more computing complexity; and
(3) mHDSC exploits Hessian regularization to preserve local simi-
larity, which steers the solution varying smoothly along geodesics
in the manifold.

We carefully implement mHDSC for image annotation and con-
duct experiments on the PASCAL VOC'07 dataset [6]. To evaluate
the performance of mHDSC, we also compare mHDSC with several
baseline algorithms including discriminative sparse coding (DSC),
Laplacian discriminative sparse coding (LDSC), Hessian discrimina-
tive sparse coding (HDSC), multiview sparse coding (mSC), multi-
view discriminative sparse coding (mDSC) and multiview
Laplacian discriminative sparse coding (mLDSC). The experimental
results demonstrate the effectiveness of mHDSC by comparison
with the baseline algorithms.

The rest of this paper is arranged as follows. Section 2 presents
the proposed mHDSC framework. Section 3 details the implemen-
tation of mHDSC. Section 4 discusses some related work. And Sec-
tion 5 demonstrates experimental results followed by the
conclusion in Section 6.

2. Multiview Hessian discriminative sparse coding

In multiview sparse coding (mSC), we are given a multiview
dataset of N observations from V views including [ labelled data

ie. S ={x"x? . 7x§‘”,y,-}£:1 and u unlabelled data ie.
Su={x"x% ...

it example (P, is the number of class). In the following section of
this paper, we use X’ € R”* to denote the v view feature vectors
of labelled data (P, is the dimension of the " view feature),
Y € R to denote the label vectors, and X/’ € R"**™-) to denote
the " view feature vectors of unlabelled data.

By incorporating an additional regularization term to control
the sparsity and exploit the local geometry, mSC aims to find an
integrated sparse representation (code) W € R¥*N of the multi-
view data and a multiview dictionary D ={D", D@, . DV,
where D ¢ R**N¢ contains N, dictionary atoms for the view v.
Thus, mSC is written as follows

X1 |, where y; € R is the class labels of the

[l

1Y
min WZIIX(”> —DYWIJ; + (W), (M
V=
st DI <1, 1<i<Ng, XV ={X". X}

where (W) = p101(W) + 7202(W) + 7305(W), @1(W) = |[W]|1 ~ is
a regularizer that controls the sparsity over W, ¢,(W)=

M ||(D“’))T\|1m is a regularizer that controls the structure of dic-
tionary, ¢3(W) is a regularizer to preserve the local similarity, and
71, 72 and y3 are parameters that balance the loss function and reg-
ularizations ¢1(W), @2(W) and ¢@3(W), respectively.

Although there are different choices for ¢,(W) to exploit the lo-
cal geometry, Laplacian regularization (LR) [30,8] is promising to
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