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Abstract

The paper reports a novel approach for the problem of automatic gridding in Microarray images. Such problem often requires human

intervention; therefore, the development of automated procedures is a fundamental issue for large-scale functional genomic experiments involving

many microarray images. Our method uses a two-step process. First a regular rectangular grid is superimposed on the image by interpolating a set

of guide spots, this is done by solving a non-linear optimization process with a stochastic search producing the best interpolating grid

parameterized by a six values vector. Second, the interpolating grid is adapted, with a Markov Chain Monte Carlo method, to local deformations.

This is done by modeling the solution a Markov random field with a Gibbs prior possibly containing first order cliques (1-clique). The algorithm is

completely automatic and no human intervention is required, it efficiently accounts arbitrary grid rotations, irregularities and various spot sizes.

q 2006 Elsevier B.V. All rights reserved.
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1. Introduction

DNA microarrays [5] allow the simultaneous monitoring of

the expression levels for thousands of genes. This has a large

impact in many application areas such as diagnostic human

diseases and treatments (determination of risk factors,

monitoring disease stage and treatment progress, etc.),

agricultural development (plant biotechnology) or quantifi-

cation of GMOs, drug discovery and design. In cDNA

microarrays, a set of genetic DNA probes (from several

hundreds to some thousands) are spotted on a slide. Two

populations of mRNA, tagged with fluorescent dyes, are then

hybridized with the slide spots, and finally the slide is read with

a scanner. The outlined process produces two images, one for

each mRNA population, each of which varies in intensity

according to the level of hybridization represented as the

quantity of fluorescent dye contained in each spot. The measure

gene expression level is represented in terms of ratio between

samples stained with different dyes.

Image analysis is an essential aspect of microarray

experiment: measures over the scanned image can substantially

affect successive steps such as clustering and identification of

differentially expressed genes. Scanned microarray image

processing has three main tasks [17]: (i) gridding, which is

the process of assigning the coordinates to the spots; (ii)

segmentation, it allows the separation between foreground and

background pixels; (iii) intensity extraction, it consists in the

computation of average foreground and background intensities

for each spot of the array.

Most of available gridding approaches require human

intervention, for example to specify some points in the spot

grid or even to individually adjust spots. Automating this part

of the process will allow high throughput analysis. Therefore,

this paper focuses on the development of an automated

procedure for the problem of automatic gridding. Automated

segmentation is another problem, which has also been studied

by several authors [3,12]. Indeed, the image processing stage in

microarray experiments is often the source of strong variations

in the whole experiments and affects all subsequent analysis

steps [1], for example the experiment reported in [12] shows

that image analysis by manual gridding performed by different

researchers leads to large discrepancies in the gene expression

level values from the same array.

The problem of automatic gridding is complicated by the

fact that microarray images are usually highly contaminated

with noise and artifacts of the wet lab processes. Often

rotations, misalignment and local deformations of the ideally

rectangular grid can occur. There is a high need of methods for

microarray gridding, which are robust and flexible at the same

time.
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Some efforts to help automatic microarray data processing

have recently emerged in literature [2,8,9,15,17]. However,

most of them impose different kind of restrictions and are based

on strong assumptions. For example, the approaches in [2,10]

require that grid rows and columns are strictly aligned with the

x and y axes. Other approaches such as [8,9] rely on the

Bayesian paradigm to deal with uncertainty and noise. In

particular, the approach presented in [9] describes a second

order prior for microarray gridding whereas [8] presents a

general approach to the grid matching and image warping

problem. Here, we adopt a prior, possibly, containing just

1-cliques, this can simplify, from a computational point of

view, the search of the maximum a posteriori solution.

The adopted prior requires the previous computation of a

reference regular grid, which is generated by interpolating a set

of guide spots located by using the Orientation Matching

Transform (OMT) [4]. Interpolating a set of guide spots has

also been exploited in [14], by imposing several restriction

over the grid, and without any further adaptation. Here, we

perform the grid interpolation by solving a highly non-linear

optimization problem via stochastic search approaches. This

allows to efficiently deal with any grid rotations and shifting.

The final result is obtained via a Maximum A Posteriori (MAP)

grid obtained by a Markov Chain Monte Carlo approach. The

adopted probabilistic model allows to deal with local

deformations of the interpolating grid.

Our method improves the approach reported in [14] by

allowing arbitrary grid alignments with respect to the image

axes and by refining the interpolating grid for dealing with

local deformations. It also simplifies the general model in [8]

by adopting a simple prior based on 1-cliques.

The paper is organized as follows, Section 2 reports the

prior model with the grid interpolation step, whereas in Section

3, we present out the Bayesian approach. A set of experiments

on computer generated and real images is reported in Section 5.

2. The prior

Here, we approach the problem of microarray image

addressing within a Bayesian framework [6]. Indeed, Bayesian

methods are pervasive in all areas of Computer Vision, they are

useful to encompass into a unique model the data consistency

constraint, the model of observation and all our a priori

assumption and knowledge about the solution of our problem.

The general Bayesian framework codifies how to proceed with

data analysis and inference in presence of uncertainty [11].

Given the data D and the modelM, the Bayes principle suggest

to take decisions on the basis of the posterior probability

pðMjDÞ, which in turn is proportional to the product between

the likelihood term, representing the observation model, PðDj

MÞ and the prior term, representing our knowledge, P(D). For

the case of microarray image gridding, we have an observed

datum, the input image, I, which is the raw visual

representation of an ideal grid, G consisting of a sequence of

spot locations with a well-defined organization. The Maximum

A Posteriori (MAP) grid estimate consists into searching the

most likely grid given the observed image.

This paper assumes a notation similar to the one adopted in

[8]; let us define the list of node locations GZ fgi; iZ1;.;ng,

where gi is the vector of image coordinates of the ith node. Let

TZ fti; iZ1;.;ng be the reference grid computed as reported

in Section 2.1, then the joint distribution of G is modeled by a

Gaussian Markov random field:
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Therefore, the grid location of the ith point is assumed to be

Gaussian distributed with mean ti, the computation of a

rectangular reference grid with nodes ti is the main part of our

approach. This is performed in a two-step procedure. In the first

step, guide spots are located via OMT. The second phase

defines a grid interpolating the identified spots via metaheur-

istic search (i.e. stochastic hill climbing and genetic algor-

ithms). The technique of using a set of guide spot has been also

exploited in [14].

Guide spots are located by using the orientation matching

transform for circular object detection. OMT [4] is an

extension of the Hough Transform for circles, and has several

advantages: it is a correlation-based transform, it allows to treat

in the same manner a set of radius in a wide range, it can be

tailored to recognize clear spots on dark background and vice

versa or both. Given an image I(x, y), its OMT, OM(u, v)

represents the evidence that the point (u, v) be the center of a

circular object. The local maxima of OM(u, v), which are

above a given threshold are considered as centers of the guide

spots. In our experiment, we assumed a threshold of 0.8.

2.1. The reference grid

The detected guide spots computed in the previous step are

used to generate the rectangular grid, T, which best

interpolates their centers. The problem to determine the

optimal rectangular grid T was modeled as a coordinate

transformation from a given coordinate system (X, Y) to a new

one (X 0, Y 0). Guide spots coordinates are expressed into the (X,

Y) axes, and produced with respect to the hardware and

software acquiring the microarray image. The new coordinate

system (X 0, Y 0) attempts to minimize a large fraction of

distortions introduced by different microarray fabrication

imprecision and errors. Ideally, in the new coordinate system

spots are exactly located in position iDx, jDy; iZ0, 1,., N; jZ
0, 1,., M; this also means that any cost function should take

into consideration the displacement of the microarray spots

from the ideal grid (i.e. the points iDx, jDy; iZ0, 1,., N; jZ0,

1,., M).

As shown in Fig. 1, in this paper, we assume that (X 0, Y 0)

distortion was mainly due to a roto-translation of the X, Y axes.

The new origin is located in x0, y0, and axes underwent

independent rotations. In other words, the new coordinate

system is identified by a tuple of six parameters: x0, y0 (the

coordinates of the lower left point of the grid), a and b (i.e. the

angles of the grid axes with the x direction), Dx and Dy (i.e. the
grid spacing).
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