Tetrahedron Letters 49 (2008) 4780-4783

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

The synthesis of compounds related to the indole–indoline core of the vinca alkaloids (+)-vinblastine and (+)-vincristine

Michael J. Harvey, Martin G. Banwell*, David W. Lupton

Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 0200, Australia

ARTICLE INFO

Article history: Received 23 April 2008 Accepted 19 May 2008 Available online 23 May 2008

Keywords: Alkaloid Analogs Arylation Indole Indoline Vinblastine Vincristine

ABSTRACT

A series of α' -aryl- α' -carbomethoxycycloalk-2-en-1-ones, **16**, has been prepared using the Pinhey arylation methodology for introducing the aromatic residue. Subjection of these compounds to Johnson iodination and Pd[0]-catalyzed Ullmann cross-coupling of the resulting α -iodocycloalkenones **11** with 2-iodonitrobenzene (**5**, X = I) then affords α, α' -diaryl- α' -carbomethoxycycloalk-2-en-1-ones of the general form **10**. Reductive cyclization of this last type of compound gives the corresponding indoles **9a**-**f** (*n* = 1–3), some of which resemble the indole–indoline cores of the clinically important alkaloids (+)-vinblastine (**1**) and (+)-vincristine (**2**).

© 2008 Elsevier Ltd. All rights reserved.

The binary indole–indoline alkaloids (+)-vinblastine (**1**) and (+)-vincristine (**2**) were originally isolated from the Madagascan periwinkle *Cartharanthus roseus* (L.) G. Don. Subsequently, it was shown that these natural products are generated biosynthetically by oxidative coupling of the co-occurring and structurally simpler metabolites catharanthine (**3**) and (–)-vindoline (**4**).¹ This coupling leads, inter alia, to the establishment of the C10–C16'-bond within compounds **1** and **2**.

The potent tubulin binding properties of (+)-vinblastine (1) and (+)-vincristine (2) have resulted in their being used clinically for the treatment of a range of cancers including various lymphomas and sarcomas, advanced testicular cancer, breast cancer and acute leukemia.¹ However, their application can be severely limited by damage to the patient's bone marrow or because of neurotoxicological effects.¹ Accordingly, considerable effort has been and continues to be devoted to the identification of analogs, especially structurally simpler ones, that might display improved therapeutic properties.^{1,2} Such studies are being facilitated by the recent disclosure of the X-ray crystal structure of a vinblastine-tubulin complex.³ While the structural complexity of the title compounds has created significant challenges for the synthetic chemist, various spectacular achievements have been recorded in the area,⁴ including Fukuyama's first de novo syntheses of these alkaloids which were reported in 2002^{4b} and 2004.^{4a} Nevertheless, the search continues for new and efficient methods that allow for the assembly of key substructures of compounds **1** and **2**.⁵ Without exception, the established routes⁴ to the indole–indoline core within these alkaloids have mimicked the proposed biosynthetic pathway for linking the progenitors **3** and **4** to one another.⁶ In particular, these processes exploit the nucleophilic character at C10 within the latter compound and the electrophilic properties of C16 that is revealed upon conversion of compound **3** into an azafulvinium ion derivative. On this basis, we now outline a distinctly different

^{*} Corresponding author. Tel.: +61 2 6125 8202; fax: +61 2 6125 8114. *E-mail address:* mgb@rsc.anu.edu.au (M. G. Banwell).

^{0040-4039/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.05.082

approach to the carbomethoxymethyl-bridged indole-indoline core structures of the title compounds. A major motivation for pursuing the present lines of enquiry was the prospect that biologically active analogs of compounds **1** and **2** could emerge since certain diarylmethanes and benzophenones are known to strongly inhibit tubulin polymerization and thus halt mitosis.⁷

A key element associated with the work described herein was our development, in 2003, of an effective two-step protocol for the synthesis of indoles that starts, as shown in Scheme 1, with the Pd[0]-catalyzed Ullmann cross-coupling of *o*-halonitroarenes (e.g., **5**) and α -iodo- or α -bromo-enones (e.g., **6**) or -enals.⁸ This reaction proceeds smoothly using copper in DMSO at temperatures as low as 35 °C and with Pd[0]-catalyst loadings of as little as a few mol %. The ensuing cross-coupling product (e.g., **7**) is then subjected to reductive cyclization, most often using dihydrogen in the presence of palladium on carbon, and thereby affording the target indole (e.g., **8**). The starting α -halo-enone or -enal (e.g., **6**) is generally readily prepared by reaction of the corresponding nonhalogented enone or enal with molecular iodine or bromine in the presence of a nucleophilic species such as pyridine according to procedures developed by Johnson and others.⁹

Bearing such results in mind, we sought methods for the construction of α -iodoenones of the general type **11** (Fig. 1) incorporating, at the α' -position, both a carbomethoxy group and various aryl (Ar) units including indoles. If such systems could be constructed it was anticipated that they would participate in Pd[0]catalyzed Ullmann cross-coupling reactions⁸ with *o*-iodonitrobenzene (**5**, X = I) to give products of the general type **10** and these would, in turn, engage in reductive cyclization reactions to deliver the target carbomethoxylated diarylmethanes, including bisindoles if Ar = indole in structure **9**.

Clearly, the successful implementation of such an approach requires, at the outset, establishing serviceable routes to the noniodinated equivalents of the enones of the general type **11**. In the event this proved to be a straightforward matter. So, for example, commercially available methyl 2-oxo-1-phenylcyclopentanecarboxvlate (14a) (Scheme 2) was converted, under conventional conditions, into the corresponding silvl enol ether **15a** (n = 1) which was then subjected to a Saegusa-type oxidation¹⁰ with $Pd(OAc)_2$ and *p*-benzoquinone thus affording compound **16a** (n = 1) in 70% yield over these two steps. The synthesis of congener **16b** (n = 1)required initial preparation of methyl 2-oxo-1-(2'-methoxyphenyl)cyclopentanecarboxylate [14b (n = 1)] which was achieved by 'cross-coupling' methyl 2-oxocyclopentanecarboxylate (12) with o-methoxyphenyl lead triacetate (**13b**)¹¹ (Path A, Scheme 2) in the presence of pyridine using protocols developed by Pinhey and co-workers.¹² Subjection of this 'cross-coupling' product to the same two-step dehydrogenation protocol (Saegusa oxidation) as detailed immediately above then afforded compound 16b

Scheme 2.

Details of the synthetic routes, as depicted in Scheme 2, used to obtain compounds 16a-f (n = 1, 2 or 3)

Сра	Path	Aryl lead triacetate	Intermediate(s) involved	Number of steps	Yield/ step (%)
16a (<i>n</i> = 1)	Part of A	NR ^a	15a (<i>n</i> = 1)	2	72 and 97
16b (<i>n</i> = 1)	А	13b	14b (<i>n</i> = 1)	3	72, 96 and 61
			and 15b (<i>n</i> = 1)		
16e (<i>n</i> = 1)	А	13e	14e (<i>n</i> = 1)	3	81, 72 and 60
			and 15e (<i>n</i> = 1)		
16a (<i>n</i> = 2)	В	13a	None	1	79
16b (<i>n</i> = 2)	В	13b	None	1	76
16c (<i>n</i> = 2)	В	13c	None	1	84
16d (<i>n</i> = 2)	В	13d	None	1	75
16e (<i>n</i> = 2)	В	13e	None	1	71
16f (<i>n</i> = 2)	В	13f	None	1	82
16a (<i>n</i> = 3)	В	13a	None	1	63
16b (<i>n</i> = 3)	В	13b	None	1	70
16e (<i>n</i> = 3)	В	13e	None	1	71

^a NR = not required.

Table 1

Download English Version:

https://daneshyari.com/en/article/5277386

Download Persian Version:

https://daneshyari.com/article/5277386

Daneshyari.com