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a b s t r a c t

We propose a generic online multi-target track-before-detect (MT-TBD) that is applicable on confidence
maps used as observations. The proposed tracker is based on particle filtering and automatically initial-
izes tracks. The main novelty is the inclusion of the target ID in the particle state, enabling the algorithm
to deal with unknown and large number of targets. To overcome the problem of mixing IDs of targets
close to each other, we propose a probabilistic model of target birth and death based on a Markov Ran-
dom Field (MRF) applied to the particle IDs. Each particle ID is managed using the information carried by
neighboring particles. The assignment of the IDs to the targets is performed using Mean-Shift clustering
and supported by a Gaussian Mixture Model. We also show that the computational complexity of MT-
TBD is proportional only to the number of particles. To compare our method with recent state-of-the-
art works, we include a postprocessing stage suited for multi-person tracking. We validate the method
on real-world and crowded scenarios, and demonstrate its robustness in scenes presenting different per-
spective views and targets very close to each other.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Multi-target tracking is a challenging task in real-world scenar-
ios due to the variability of target movements, shapes, clutter and
occlusions. Moreover, the computational cost may exponentially
increase with the number of co-occurring targets and the maxi-
mum number of targets may have to be fixed a priori. Single-target
tracking generally represents the state of each target with a single
state vector [1]. In multi-target tracking the size of state vector in-
creases with the number of targets [2–12] unless a single-target
tracker is initialized for each target [13–20]. We refer to the former
approach as one-state-per-target (OSPT) and to the latter one-filter-
per-target (OFPT). OSPT methods perform tracking optimization at
each time step on the overall state space. Only a predefined num-
ber of targets can be tracked [14] or ad hoc stages can be used to
estimate the number of targets in the scene [2,5]. OFPT methods
perform tracking by a local optimization for each target, thus lim-
iting their application to situations with a small number of targets
that are easily distinguishable.

Target locations may be gathered from sensors (e.g. laser, sonar,
camera) via confidence maps that provide multiple measurements
per target and carry information in the form of intensity levels over
space (Fig. 1). These intensity levels are affected by different types
of noise on background areas and/or on the targets themselves,

thus resulting in inaccurate position estimations. Tracking algo-
rithms employ target locations as measurements, either directly
as confidence maps (unthresholded data) [13,21,20,22] or as binary
maps (target/non-target information) obtained by thresholding the
confidence values [3,4,6,10]. Although the latter strategy is the
most commonly used, relevant data may be lost with this process.
Tracking-by-detection methods [20] perform target-tracker associ-
ation, and initialization and termination of tracks with greedy algo-
rithms. Track-before-detect (TBD) methods perform tracking of
targets using unthresholded data [23] and target-tracker associa-
tion is implicitly computed by the tracker. TBD is a Bayesian filter,
generally built on the concept of particle filter, and commonly used
for radar tracking [23,24]. Multi-target tracking is performed on
noisy intensity levels and the targets are assumed to be point tar-
gets. Initialization and termination of tracks are performed by the
tracker using target birth and death models.

In this paper we propose a novel multi-target tracker based on
TBD algorithm [23] and applied to confidence maps. To enable
multi-target tracking, we develop a method where target IDs are
assigned based on Mean-Shift clustering and Gaussian Mixture
Model (GMM). The birth and death of targets are modeled with a
Markov Random Field (MRF). Unlike [24], we do not need to define
the maximum number of targets a priori and, unlike [20], the ini-
tialization of a track may occur in any location of the image, thus
making the multi-target track-before-detect (MT-TBD) automatic
and flexible to different scenarios. MRF enables multi-target track-
ing without augmenting the state (OSPT methods, e.g. [2]) or the
number of filters (OFPT methods, e.g. [13]), caused by an increase

1077-3142/$ - see front matter � 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.cviu.2012.08.008

⇑ Corresponding author.
E-mail address: fabio.poiesi@eecs.qmul.ac.uk (F. Poiesi).
URL: http://www.eecs.qmul.ac.uk/~andrea/ (A. Cavallaro).

Computer Vision and Image Understanding 117 (2013) 1257–1272

Contents lists available at SciVerse ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate/cviu

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cviu.2012.08.008&domain=pdf
http://dx.doi.org/10.1016/j.cviu.2012.08.008
mailto:fabio.poiesi@eecs.qmul.ac.uk
http://www.eecs.qmul.ac.uk/~andrea/
http://dx.doi.org/10.1016/j.cviu.2012.08.008
http://www.sciencedirect.com/science/journal/10773142
http://www.elsevier.com/locate/cviu


in the number of targets. Moreover, the use of MRF overcomes the
limitations of Buzzi et al. [24] by allowing a reliable tracking of
close targets without loss of performance and leads to a computa-
tional complexity depending only on the number of particles. Com-
pared to the recent work by Benfold and Reid [10], the tracking
accuracy of the proposed MT-TBD improves by 11% with 2 s of la-
tency and by 10% with 4 s of latency on a publicly dataset from Ox-
ford town center.

The paper is organized as follows. Section 2 discusses the re-
lated work for multi-person tracking. Section 3 gives an overview
of the proposed approach and introduces MT-TBD. The ID manage-
ment via MRF is explained in Section 4. Section 5 illustrates the
application of MT-TBD to multi-person tracking. Section 6 dis-
cusses the experimental results, the comparisons with existing
methods and the analysis of the computational complexity. Finally,
in Section 7 we draw the conclusions and present possible research
directions.

2. Related work

In this section we discuss recent works on multi-person track-
ing, we analyze their main contributions and classify each method
in its corresponding category. Multi-target video trackers can be
classified into causal and non-causal methods. Causal methods
use information from past and present observations to estimate
trajectories at the current time step. Non-causal methods use also
information from future observations, thus resulting in a delayed
decision. Although non-causal approaches are not suitable for
time-critical applications, they can achieve a global optimum lead-
ing to more robust results during occlusions.

Examples of causal trackers are Bayesian filters [17,10,16,
15,20]. Yang et al. [17] use a Bayesian-based detection association
obtained by Convolutional Neural Network (CNN) trained on color
histograms, elliptical head model, and bags of SIFTs. Benfold and
Reid [10] find the optimum trajectories within a four-second win-
dow by a Minimum Description Length (MDL) method applied on
trajectories from a forward and backward Kanade–Lucas–Tomasi
(KLT) tracking and from a Markov Chain Monte Carlo Data Associ-
ation (MCMCDA). Alternatively, the particle filter is used in
[16,15,20]. Ali and Dailey [16] track heads obtained by Haar-like
features and AdaBoost; whereas Xing et al. [15] employ the Hun-
garian algorithm for the optimization of short but reliable trajecto-
ries obtained by tracking the upper human body. Depending on the
scenario, Breitenstein et al. [20] track people detected by Histo-
gram of Oriented Gradients (HOG) or Implicit Shape Model (ISM).
Here the association between detections and tracks is performed
by a greedy algorithm and boosting. A different approach is pre-
sented by Rodriguez et al. [7] where tracking is obtained on four
points per head by KLT and head detection is optimized by crowd

density estimation and camera-scene geometry. Tag-and-track
methods for high-density crowd are proposed in [26,27], where
targets are assumed to follow a learned crowd behavior. Ali and
Shah [26] deal with crowds with coherent motion by modeling
their global behavior, the environment structure and the local
behavior of people. Rodriguez et al. [27] focus on crowds with
non-coherent motion where the modeling is performed by Corre-
lated Topic Model (CTM) that predicts the next position of a person
by exploiting the optical flow. Note that among causal methods,
only Benfold and Reid [10] and Rodriguez et al. [7] use an OSPT
framework. This is because the OSPT is generally more complex
than OFTP, but the modeling for multi-person tracking is more
flexible and computationally cheaper [10].

As for non-causal trackers, short-term tracks (tracklets) [3,4,8,6,
9,11,12] can be associated over time by using a modification of the
Multi-Hypothesis Tracking (MHT) algorithm [28], where the detec-
tions are obtained with a person detector [29]. Huang et al. [3]
associate tracklets by Hungarian algorithm using position, time
and appearance features, and then refine them using entry and exit
points in the scenes, which are in turn learned from tracklets. Li
et al. [4] show how the association can be improved by using a
combination of RankBoost and AdaBoost in a hierarchical approach
where longer trajectories are generated using a set of 14 features
per tracklet by starting from the lower levels. In Yang et al. [8],
the association is performed using RankBoost applied to an optimi-
zation of affinities and dependencies between tracklets by a Condi-
tional Random Field (CRF). Kuo et al. [6] associate tracklets using
an AdaBoost classifier that learns online the discriminative appear-
ance of targets based on their color histogram, covariance matrix
features and HOG. Kuo et al. [9] extract motion, time and appear-
ance from different body parts of each target in order to perform
a re-identification step to resolve long-term occlusions. Yang and
Nevatia [11] learn online the non-linear motion of people and a
Multiple Instance Learning (MIL) framework for the appearance
modeling using the estimation of entry and exit regions. Further-
more, Yang and Nevatia [12] use CRF to model affinity relation-
ships between tracklet pairs, where the association of tracklets is
based on Hungarian algorithm and a heuristic search. Table 1 sum-
marizes the methods covered in this section and the dataset on
which these methods have been tested.

Similarly to Stalder et al. [21] and Breitenstein et al. [20], the
proposed MT-TBD is a causal method that makes use of confidence
maps as measurement for tracking. However, compared to [21], we
use the confidence maps online without the need of any temporal
processing and, compared to [20], an automatic assignment be-
tween confidence map and targets is performed. Moreover, unlike
[20], which uses manually selected areas at the borders of the im-
age to initialize tracks, we do not use any prior information about
the scene. This becomes extremely advantageous when targets
temporarily undergo a total occlusion in any position of the image.
In addition to this, we overcome the limitations of OFTP ap-
proaches [20,22] with a global and instantaneous optimization of
target tracking in MT-TBD by employing a general likelihood func-
tion obtained from a controlled sequence (Section 5.1). Finally, un-
like De Leat et al. [22], the use of multiple measurements per target
is tested in various crowded scenes with different camera
perspectives.

3. Sequential Monte Carlo estimation for multi-target track-
before-detect

3.1. Confidence maps and track-before-detect

Let a confidence map M provide the information on the esti-
mated position of targets through spatially-localized intensity lev-
els (Fig. 1). The ideal representation of the target position on a

Fig. 1. Sample confidence map that we use as input (observation) to simulta-
neously track multiple objects. In this example, the confidence map is obtained
with a head localization method based on [25].
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