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Abstract—Ciguatoxin C-CTX-1 was isolated as a principal causative toxin of ciguatera seafood poisoning in the Caribbean Sea, and
is structurally classified as a ladder-shaped polycyclic ether. In this Letter, we report the synthesis of the tricyclic LMN-ring system
of C-CTX-1. SmI2-mediated reductive cyclization efficiently constructed the seven-membered M-ring with the axially oriented
1,3-dimethyl structure.
� 2007 Elsevier Ltd. All rights reserved.

Ciguatoxins, the principal causative toxins of ciguatera
seafood poisoning, are large ladder-like polycyclic
ethers.1 To date, more than 20 ciguatoxin congeners
have been structurally identified.2 Ciguatera causes
diverse and often long-lasting human health problems.
The severity, number and duration of ciguatera symp-
toms reflect a combined influence of dose, toxin profile
and individual susceptibility. In the Pacific Ocean, neu-
rological symptoms predominate, while in the Carib-
bean Sea, gastrointestinal symptoms are a dominant
feature of the disease.1b These quantitative differences
in symptoms could originate from the structural differ-
ences between Pacific and Caribbean ciguatoxins; in
contrast to 13 ether rings in the Pacific ciguatoxins,
Caribbean ciguatoxin C-CTX-1 (1, Fig. 1)3 possesses
14 ether rings with distinct functional group patterns.

The very limited supply of ciguatoxins from natural
sources has prevented structure–symptom relationship
studies as well as development of therapeutic methods
for ciguatera. To address these issues, we recently syn-
thesized three Pacific ciguatoxins4,5 and developed
immunochemical methods for their detection.6 Here,
we report the synthesis of LMN-ring moiety 4 of Carib-
bean ciguatoxin 1, which could be useful both for pre-

paring anti-ciguatoxin antibodies and as a fragment
for its total synthesis.

Tricyclic fragment 4 (Fig. 1) was designed to be coupled
with HI-ring 3 to generate the right wing fragment 2,
which would be further assembled with the previously
reported ABCDE-ring fragment7 to deliver C-CTX-1
1. The convergent strategies necessary for these two cou-
plings were recently developed and applied to the total
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Figure 1. Structures of the Caribbean ciguatoxin C-CTX-1 and
retrosynthesis of the right wing fragment of C-CTX-1.
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synthesis of the Pacific ciguatoxins.4,8 LMN-ring por-
tion 4 is the most heavily substituted sub-structure of
1; three of the four angular methyl groups are present
in this region. In particular, the M-ring posed a signifi-
cant synthetic challenge, because the two sterically
demanding methyl groups are placed in a 1,3-diaxial
relationship on the strained seven-membered ring.9

Although a number of strategies for the construction
of oxepane rings have been developed,10 no general
method was available for building the bis-trisubstituted
alkyl ether in the oxepane format. Therefore, we
planned a flexible synthetic strategy so that various
methodologies could be applied to the M-ring cycliza-
tion, starting from the common L-ring fragment 5. After
synthesis of the LM-ring system, the N-ring would be
constructed to furnish 4.

First, the two side chains of the six-membered ring 611

were modified (Scheme 1). MOM-protection of alcohol
6, ozonolysis of the terminal olefin of 7, and subsequent
allylation with a Grignard reagent in THF12 gave
secondary alcohol 8 as the major stereoisomer (2.1:1).
Introduction of the 2-naphthylmethyl (NAP)13 group
to alcohol 8, followed by removal of the p-methoxyphe-
nyl (MP) acetal from 9, produced 1,3-diol 10. Chemose-
lective oxidation of the primary alcohol of diol 10 was
realized by using the modified Corey–Kim oxidation,14

leading to aldehyde 11. Then, compound 11 was ex-
posed to a Wittig reagent to give the a,b-unsaturated
olefin 12, reduction of which with KBH(s-Bu)3 resulted
in the saturated 1,5-diol 5.15

Our first strategy for synthesizing the seven-membered
M-ring was based on the acid-catalyzed, 7-endo selec-
tive, cyclization of hydroxy epoxides, developed by
Nicolaou (Scheme 2).16 Before the cyclization, the
appropriate functional groups were introduced into 5.
Swern oxidation of diol 5 generated the dicarbonyl com-
pound, the aldehyde group of which was reacted with a
Wittig reagent to produce a-methyl-a,b-unsaturated
ester 13. Axial-attack of Me3Al on the C48-ketone of
13 led to tertiary alcohol 14 as the sole isomer.17 After

conversion of alcohol 14 to its TMS ether, the ester of
15 was reduced with DIBAL-H to generate 16. Sharpless
asymmetric epoxidation18 of allylic alcohol 16 led stereo-
selectively to epoxide 17. Following the Nicolaou
method, a p-bond was placed adjacent to the epoxide
unit in order to facilitate the 7-endo cyclization through
cleavage of the C53–O bond. Thus, SO3Æpyridine oxida-
tion of 17 and subsequent Wittig olefination of 18 pro-
duced 19, the TMS group of which was removed to
give hydroxy epoxide 20. However, to our disappoint-
ment, a variety of acid catalysts failed to transform 20
into oxepane 22. Instead, diene 23 was generated under
these conditions in 40% yield via C62-proton elimina-
tion/epoxide opening (see 21). Interestingly, the lower
homologue 24 was successfully converted to tetrahydro-
pyran 25 in 79% yield under the same conditions.19

These two contrasting results reflect the significant
difference in cyclization efficiency between the six- and
seven-membered rings. A more powerful method was
clearly required to construct the dimethyl-substituted
M-ring.

As shown in Scheme 3, we next adopted Nakata’s SmI2-
induced reductive intramolecular cyclization20,21 to con-
struct the M-ring. Cyclization substrate 31 was prepared
in seven steps from the common intermediate 5. The pri-
mary alcohol of diol 5 was selectively masked with a TBS
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Scheme 1. Reagents and conditions: (a) MOMCl, i-Pr2NEt, 1,2-
dichloroethane, reflux, 99%; (b) O3, pyridine/CH2Cl2/MeOH (1:3:4),
�78 �C, then Me2S; (c) CH2@CHCH2MgBr, THF, �100 �C, 59% (8),
28% (C44-epimer) (two steps); (d) NAPBr, TBAI, NaH, THF/DMF
(3:1), rt; (e) PPTS, MeOH, 94% (two steps); (f) NCS, PhSMe, CH2Cl2,
�20 �C, then i-Pr2NEt, �78 �C; (g) Ph3P@CHCO2Me, THF, rt, 62%
(E/Z = 1:2, two steps); (h) KBH(s-Bu)3, t-BuOH, THF, �100 to 0 �C,
85%.
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Scheme 2. Reagents and conditions: (a) (COCl)2, DMSO, CH2Cl2,
�78 �C, then Et3N; (b) Ph3P@C(Me)CO2Me, toluene, rt, 56% (two
steps); (c) Me3Al, CH2Cl2, �78 �C to �15 �C, 81%; (d) TMSCl,
imidazole, CH2Cl2, rt; (e) DIBAL-H, CH2Cl2, �78 �C, 89% (two
steps); (f) Ti(Oi-Pr)4, (+)-diethyl LL-tartrate, t-BuOOH, 4 Å MS,
CH2Cl2, 89%; (g) SO3ÆPy, Et3N, DMSO, CH2Cl2, rt; (h)
Ph3P@CHCO2Me, toluene, rt; (i) TBAF, THF, 72% (three steps); (j)
CSA, CH2Cl2, 0 �C to rt, 0% (22), 40% (23); (k) CSA, CH2Cl2, 0 �C,
79%.
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