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a b s t r a c t

This paper presents an approach to extract curvilinear structures (lines) and their widths from two-
dimensional images with high accuracy. Models for asymmetric parabolic and Gaussian line profiles
are proposed. These types of lines occur frequently in applications. Scale-space descriptions of parabolic
and Gaussian lines are derived in closed form. A detailed analysis of these scale-space descriptions shows
that parabolic and Gaussian lines are biased more significantly than the well-known asymmetric bar-
shaped lines by the partial derivatives of the Gaussian filters that are used to extract the lines. A bias
function is constructed that relates the parameters of the lines to biased measurements that can be
extracted from the image. It is shown that this bias function can be inverted. This is used to derive an
algorithm to remove the bias from the line positions and widths. Examples on synthetic and real images
show the high subpixel accuracy that can be achieved with the proposed algorithm. In particular, the line
extractor is tested on a publicly available data set that includes manually labeled ground truth. The
results on this data set show that very accurate results can be achieved on real data if the appropriate
line model is used.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The extraction of curvilinear structures, often simply called
lines, has applications in many fields of science and technology.
In the field of photogrammetry and remote sensing, it can be used
in systems that extract roads from aerial and satellite images with
different modalities, e.g., optical, synthetic aperture radar (SAR),
and light detection and ranging (LIDAR) images [1–4], to extract
road markings [3], to verify roads that are stored in geographic
information systems (GISs) [5], to register maps to images [6],
and even to extract buildings from SAR images, where lines occur
as double reflections at concave dihedral corners on buildings
[7]. Furthermore, line extraction can be used in the field of docu-
ment analysis, e.g., to interpret engineering drawings [8]. Applica-
tions in the field of computer vision include 3D reconstruction
using structured light [9–11] and stereo reconstruction [12,13].
In physics, line extraction can be used to detect gravitational waves
in time–frequency diagrams [14,15]. The same techniques can also
be used to detect sound events in pitch–time spectrograms of
audio signals [16]. In the field of medical image analysis, applica-
tions of line extraction include the extraction of blood vessels for
ophthalmic applications [17–19], for measurement of microcircu-
latory geometry [20], and for image registration [21,22], the detec-
tion of network patterns in skin lesions [23–25], the measurement

of neurites [26,27] and neurite growth [28,29], and the detection of
vesicle movements [30].

In all of the above applications, it is necessary to extract the line
positions and widths with high accuracy. However, it is well
known that the smoothing that must be used to extract features
like lines and edges from an image inherently leads to biased
extraction results. This effect was first studied qualitatively in
the context of edge extraction [31,32]. The bias inherent in line
extraction is analyzed quantitatively in [33]: a line detection algo-
rithm based on differential geometry is described. Furthermore, an
asymmetric bar-shaped line profile is proposed and its scale-space
behavior is analyzed in detail. The analysis shows that the line
positions are severely biased whenever the line is asymmetric
and that the line widths are always biased. An algorithm to remove
the bias from the extraction results is proposed, which results in
very accurate line positions and widths. The algorithm is extended
in [34,35] to handle asymmetric staircase lines (lines for which the
line has a gray value that lies between the gray values of the back-
ground on the left and right side of the line) and to complete miss-
ing junctions. Furthermore, [35] extends the algorithm to extract
lines from multispectral images, e.g., RGB color images.

Several other approaches to line detection have been proposed.
The algorithms that have been published until 1998 are reviewed
in detail in [33–35]. Therefore, only approaches that have been
published since 1998 will be reviewed here.

A line detection algorithm that uses multiple-orientation Gabor
filtering is proposed in [36]. The approach assumes lines to have a
Gaussian profile. Lines are extracted by convolving the image with
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oriented filters that are applied in 1� steps. Because of the very
large number of filters that are employed, the approach is very
slow. Furthermore, the algorithm extracts a pixel-precise region
that corresponds to the line and not the line position and width.

An algorithm that uses the same line extraction principle as [33]
is proposed in [37,38] (an earlier version of the algorithm is de-
scribed in [39]). The approach uses the function of the 1D Deriche
smoothing filter [40] as the model line profile. It then uses the
same principles that were used to derive the Canny edge detector
[41] to compute an optimal line detection filter. Because of the
choice of the model line profile, the optimal line detection filters
turn out to be the first and second derivatives of the Deriche
smoothing filter. The approach does not consider the effect of the
Deriche filters on the line positions and widths. Furthermore, the
approach does not consider asymmetrical line profiles. Since any
kind of smoothing leads to biased extraction results, the output
of this line detector is also biased, and thus not optimal.

A multi-scale ridge detector that is based on the smoothed
structure tensor is described in [42]. This algorithm uses the same
principles for line detection that were first described in [43] and
extends them by a multi-scale approach. The lines extracted with
this approach are only pixel-precise. Furthermore, the line width
is not extracted. More importantly, the bias for asymmetrical lines
is not modeled. A little experimentation shows that this kind of
line detector will return significantly biased results for the line
positions for asymmetric lines (and for the line widths if this kind
of detector were extended to extract the line width).

A line extractor that defines the line by maximizing the dissim-
ilarity between features within the line to features on both sides of
the line is described in [13]. The criterion is that the line is different
from both sides of the line in frequency space and that both sides
of the line are similar in frequency space. This facilitates the
extraction of textured lines. The approach is iterated for different
distances between the line profiles, and the optimum response is
used. Hence, lines of different widths can be extracted. The ap-
proach is very time-consuming. The accuracy of the line widths de-
pends on the discretization of the optimization search, which is
relatively coarse. Errors in the extracted line positions and widths
of more than one pixel on average are reported in [13].

Finally, an approach to line extraction based on nonlinear filter-
ing is proposed in [44]. The filter uses circular masks, within which
the pixels are weighted according to how similar their gray value is
to the gray value at the center of the mask. If the Gaussian-
weighted sum of these evaluations is below a threshold, the pixel
is labeled as a line pixel. This approach is basically a region seg-
mentation algorithm, i.e., it returns the areas in an image that cor-
respond to a line. The line position and width are not extracted
explicitly.

While the asymmetric bar-shaped line profile proposed in [33]
is the correct model for many applications, in some of the above
applications, a more suitable line profile is desirable to achieve
higher accuracies. For example, in applications in which radiation
is transmitted through translucent tubular objects, the bar-shaped
line model is suboptimal. This class of applications includes, for
example, X-ray or optical images of blood vessels.

One type of line profile suitable for these applications is a par-
abolic line profile. This type of profile is appropriate if the lines
themselves have crisp boundaries and the optics and sensor do
not cause a significant blurring of the image. This kind of line pro-
file has been used in several applications, e.g., in [45] to extract
neurons in confocal microscopic images and in the structured light
system described in [9]. The parabolic line profile is also an excel-
lent approximation to an elliptical profile [46] and to the profile
described in [47], which models the blood column and vessel wall
explicitly, determines their absorption coefficients, and inserts
them into the Beer–Lambert law.

A second type of line profile that can be used in these applica-
tions is a Gaussian line profile. This kind of profile is appropriate
if the lines themselves appear blurred, e.g., because they are buried
in a material that causes scatter [48] or because the optics or sen-
sor cause significant blurring [46,49,48]. Gaussian profiles have
been used in several applications, e.g., to extract blood vessels in
retinal images [50] or in coronary angiograms [36]. The Gaussian
line profile has been shown to be an appropriate model for extract-
ing blood vessels from conjunctival images [48] and from retinal
images [19]. It is also an excellent approximation to the smoothed
elliptical profile used in [46,49,48].

Fig. 1 shows that the parabolic and Gaussian line models pro-
vide a very good match for the profiles that occur in several real
applications.

This paper is organized as follows: Section 2 briefly describes
the line detection algorithm. Section 3 defines the parabolic and
Gaussian line models. The scale-space behavior of the line models
is analyzed in Section 4. Section 5 describes the bias removal algo-
rithm. Examples are given in Section 6. Finally, Section 7 concludes
the paper.

2. Line detection algorithm

To make this paper self-contained, the underlying line detection
algorithm will be described briefly. A detailed description can be
found in [33,34].

For the derivation of the bias removal in this paper, it is useful
to study the definition of lines in one-dimensional images, i.e., gray
value profiles, first. As discussed below, lines in two-dimensional
images are modeled as having one of the characteristic gray value
profiles across the line, i.e., perpendicular to the line. Let us call the
gray value profile f ðxÞ. Let us assume that the profile is the para-
bolic or Gaussian profile shown in Fig. 1. Then, lines are defined
as points where f 0ðxÞ ¼ 0, i.e., local maxima (for bright lines) or lo-
cal minima (for dark lines) of the gray value profile. For real
images, which contain noise, this criterion must be augmented
with a criterion to select salient lines. This can be achieved with
a threshold on jf 00ðxÞj, i.e., by requiring f 00ðxÞ � 0 for bright lines
and f 00ðxÞ � 0 for dark lines. Furthermore, since for real images
the determination of the image derivatives is an inherently ill-
posed problem, the above derivatives are estimated by convolving
the image with the derivatives of a Gaussian kernel. It is well
known that, under very general assumptions, the Gaussian kernel
is the only kernel that makes the problem of estimating the deriv-
atives of a noisy function well-posed [51]. The Gaussian kernel and
its derivatives are given by:
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In the analysis below, we will also need the integral of the Gaussian
kernel:

/ðx;rÞ ¼
Z x

�1
e�

t2

2r2 dt: ð4Þ

By convolving the gray value profile f ðxÞ with the derivatives of the
Gaussian kernel, a scale-space description of the profile is obtained:

rðx;rÞ ¼ gðx;rÞ � f ðxÞ; ð5Þ
r0ðx;rÞ ¼ g0ðx;rÞ � f ðxÞ; ð6Þ
r00ðx;rÞ ¼ g00ðx;rÞ � f ðxÞ: ð7Þ
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