Tetrahedron Letters 51 (2010) 836-839

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

One-pot derivatization of medicinally important 9-aminoacridines by reductive amination and S_NAr reaction

Gary Gellerman*, Vladimir Gaisin, Tamara Brider

Department of Biological Chemistry, Ariel University Center of Samaria, PO Box 3, Ariel 40700, Israel

ARTICLE INFO

ABSTRACT

Article history: Received 15 October 2009 Revised 25 November 2009 Accepted 4 December 2009 Available online 11 December 2009

Keywords: 9-Aminoacridine Reductive alkylation Nucleophilic substitution One-pot synthesis

The 9-aminoacridine (9-AA) core is a structure of interest to medicinal chemists and appears in many biologically active compounds, mostly with anticancer and antimalarial applications. 9-AA derivatives such as quinacrine¹ are able to intercalate with DNA, and consequently, can inhibit DNA transcription in parasites.² 9-Anilinoacridines have good antimalarial activities and are potent parasite DNA topoisomerase II inhibitors.³ N-alkylated 9-AA analogs have been shown to be potent inhibitors of prion disease in cultured neuroblastoma cells, which also show inhibition by lysosomotropic agents and cysteine protease inhibitors.⁴

In the field of antitumor DNA-intercalating agents, 9-AA derivatives play an important role due to their antiproliferative properties.⁵ Several cancer chemotherapeutics such as Amascrine and Ledakrin based on the 9-aminoacridine scaffold have been developed.^{6a} In addition, a series of potential topoisomerase II-mediated anticancer 9-anilinoacridines, which are designed to avoid biooxidation and which possess long durations of drug action, have been reported.⁷ Among these substances, 3-(9-acridinylamino)-5hydroxymethylaniline (AHMA) (Fig. 1) and its alkylcarbamate derivatives have been developed for potential clinical application.⁸

9-Aminoacridines have also been investigated as potential photoaffinity labels $^{\rm 9}$ and as fluorescent probes used to detect cancer cells. $^{\rm 10}$

Recently, 9-aminoacridine analogs, including the antimalarial drug quinacrine, were found to present strong induction of p53 function in renal cell carcinomas (RCCs) and other types of cancer cells.¹¹ Interestingly, induction of p53 function by these com-

pounds does not involve genotoxic stress and is mediated by the suppression of NF- κ B activity. Active NF- κ B signaling provides selective advantages to tumor cells by inhibiting apoptosis and promoting proliferation by stimulating expression of antiapoptotic factors.

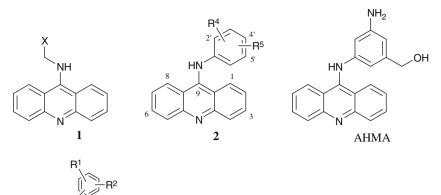
A new highly efficient one-pot derivatization of medicinally important 9-aminoacridines (9-AA) at the

amine position is described. Simple reductive amination and S_NAr reaction using easily accessible starting

materials give a fast entry to novel 9-AA derivatives for biological screening.

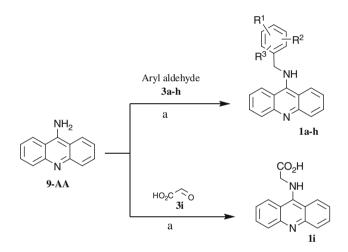
These findings, together with those mentioned above, indicate that 9-AA derivatives have potential for anticancer applications and this has inspired us to look for a short and efficient method for the derivatization of 9-AA suitable for the rapid generation of new compounds for evaluation.

Herein we report a new, highly-efficient, one-pot derivatization of 9-AA at the amine position by simple reductive amination or S_NAr reaction, using commercially available synthons. Reductive amination of aldehydes and ketones is an important and direct method for the transformation of these functionalities into amines.¹² In this carbon-nitrogen bond-forming process, the intermediate imine is not pre-formed.¹³ Thus, the chosen reducing agent should be stable enough for the in situ formation of the imine and avoid undesirable carbonyl reduction to alcohol byproducts. Mild NaCNBH₃ in a weak acidic media is a widely reported reducing reagent for reductive amination and was therefore employed as the reagent of choice. To demonstrate the synthetic potential of NaCNBH₃ in the reductive amination of 9-AA under standard conditions (1% AcOH in MeOH, rt, 3 h) we employed two classes of aldehydes: aromatic and aliphatic (Scheme 1), yielding *N*(9)-benzylacridines **1a-h** and 2-(acridin-9-ylamino)acetic acid **1i**, respectively, in moderate to good yields (Table 1).¹⁴ The N(9)-aminobenzyl analogs synthesized bear representative electron-donating (ED) and electron-withdrawing (EW) groups as well as aryl and indolyl systems at various positions around the benzyl



© 2009 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +972 3 937 1442; fax: +972 3 906 6634. *E-mail address*: garyg@ariel.ac.il (G. Gellerman).


^{0040-4039/\$ -} see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.12.020

 $X = CO_2H, R^3$

$$\begin{split} R^1, R^2, R^3 = & \text{Br, OH, OMe, CO}_2\text{H}, \text{NO}_2, \text{aryl, indolyl} \\ R^4, R^5 = & \text{CO}_2\text{H}, \text{CO}_2\text{Me, NO}_2, \text{CF}_3, \text{CN}. \end{split}$$

Figure 1. General structures of 9-aminoacridines.

Scheme 1. Synthesis of 9-aminoacridine derivatives **1** by reductive amination. Reagents and conditions: (a) NaCNBH₃, 1% AcOH in MeOH, 3 h, rt.

ring. Such syntheses are more difficult to accomplish using the classical 'reverse' synthetic approach in which 9-chloroacridine reacts with benzylamines,¹⁵ due to the poor commercial availability of substituted benzylamines. The aliphatic analog **1i** was prepared in the same manner using the corresponding glyoxylic acid hydrate (**3i**).

In the context of exploring the rapid derivatization of the 9-AA scaffold we found that the amine (NH_2) at position nine is nucleophilic enough to take part in nucleophilic aromatic substitution (S_NAr) to give medicinally important 9-anilinoacridines.¹⁶

We successfully reacted representative electrophilic haloaryls **4a–e** (Scheme 2), bearing one or two strongly electron-withdrawing groups, with 9-AA in the presence of one equivalent (half molar ratio) of Cs_2CO_3 in DMF at 90 °C to afford the substituted 9-anilinoacridines **2a–e** in good yields (Table 2).¹⁷ The uniqueness of this method is in its ability to form the anilino tether in 9-AAs with two EW groups which is very difficult to accomplish using the standard 'reverse' approach, namely nucleophilic substitution of the deactivated anilines on 9-chloroacridines.

The anilinic amine in such a 'reverse' reaction is strongly deactivated by EW groups leading mostly to unreacted materials or black tars. The additional advantage of the S_NAr reaction with 9-AAs is the extensive commercial availability of appropriately substituted haloaryls. Interestingly, 4-chloro-3-nitrobenzoic acid

Table 1Reaction data for reductive amination of 9-AA

Entry		Aldehyde	Product	Yield (%)
Litti y			FIUUUCI	field (%)
1	3a	CO ₂ H	1a	92
2	3b	HO ₂ C	1b	89
3	3c	OH NO ₂	1c	87
4	3d	0	1d	66 ^a
5	Зе	MeO MeO OMe Br	1e	68 ^a
6	3f	MeO OMe	1f	72 ^a
7	3g	ОН	1g	83
8	3h	MeO NH	1h	58 ^a
9 ^a After ch	3i	0 [∽] CO ₂ H	1i	91

^a After chromatography.

(**4c**) which bears an acidic CO_2H group smoothly undergoes the S_NAr reaction to give product **2c** even in the presence of basic Cs_2CO_3 . Moreover, the CO_2H group in **2c** (as well as in the

Download English Version:

https://daneshyari.com/en/article/5278074

Download Persian Version:

https://daneshyari.com/article/5278074

Daneshyari.com