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a b s t r a c t

Deformable models are widely used for image segmentation, most commonly to find single objects
within an image. Although several methods have been proposed to segment multiple objects using
deformable models, substantial limitations in their utility remain. This paper presents a multiple object
segmentation method using a novel and efficient object representation for both two and three dimen-
sions. The new framework guarantees object relationships and topology, prevents overlaps and gaps,
enables boundary-specific speeds, and has a computationally efficient evolution scheme that is largely
independent of the number of objects. Maintaining object relationships and straightforward use of
object-specific and boundary-specific smoothing and advection forces enables the segmentation of
objects with multiple compartments, a critical capability in the parcellation of organs in medical imaging.
Comparing the new framework with previous approaches shows its superior performance and scalability.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Image segmentation is one of the most fundamental problems
in computer vision, with applications in scene reconstruction,
motion tracking, content-based image retrieval, aerial imaging,
etc. (see Fig. 1). Medical image analysis in particular has a growing
need for the automatic segmentation of multiple organs and
complex sub-structures from increasingly large data sets of
multi-dimensional images [1–3]. The segmentation step often di-
rectly affects subsequent processing tasks such as quantification,
registration, and visualization. In many cases, the segmentation
of multiple objects should provide a complete parcellation of the
image into components without overlaps and gaps between the
segmented regions. When multiple regions meet, the boundary
around a region often becomes heterogeneous in nature, e.g.,
where the image data provides little information, boundaries
may need to be inferred based on a prior model, while image infor-
mation can be relied upon elsewhere [2,4]. Prior knowledge may
also extend to the overall organization of the structures of interest
and their spatial or topological relationships [1,5,6]. Finally,
segmentation problems can easily involve large numbers of
components or objects [7,8], and the complexity of the applied
methods must be taken into account for practical reasons.

Parametric deformable models (PDMs) – i.e., active contours
implemented by explicitly tracking points – have been widely used
in computer vision to perform image segmentation [9]. An

important property of this representation is its capability to repre-
sent boundaries at a sub-grid resolution as it is essential in the seg-
mentation of thin structures (e.g., cortical sulci). Image-based
‘‘external forces’’ drive the contour toward desired features while
contour-dependent ‘‘internal forces’’ regularize and smooth the
boundary. Geometric deformable models (GDMs) – i.e., active con-
tours implemented with level sets [10,11] – permit flexible topo-
logical changes and yield contours with no self-intersections. In
the GDM framework, ‘‘speed’’ functions describe the local move-
ment of the contour and are analogs to the forces used in PDMs.
With a single level set function, GDMs permit the segmentation
of multiple isolated regions; but in their most basic implementa-
tion, they do not control the number of objects or their topology.
Topology-preserving extensions [12–14] permit control of single
object topology, but do not address topological relationships
between objects or permit one to model boundaries between
multiple objects at once.

A number of multiple object segmentation methods based on
the level set framework have been proposed [15–24]. Most of these
approaches use N level set functions to segment N objects and rely
on coupling terms to avoid overlaps and gaps [18–20,23,25]. These
methods have the advantage that each object can be independently
specified in both its own topology and its internal and external
speeds. However, coupling terms do not forbid certain object inter-
actions, so these approaches can still produce overlaps and gaps in
practice. As well, most are not formulated to consider the relation-
ships between objects, and memory requirements become daunt-
ing as the number of objects to be segmented grows.

Vese and Chan [15] introduced the multiphase (MP) segmenta-
tion framework that represents N objects with log2(N) level sets
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based on combination rules. This model permits multiple object
boundaries, and guarantees no overlaps or gaps. As well, it sub-
stantially reduces the computational burden as the number of ob-
jects or compartments grows. However, this approach has three
key limitations. First, its image-based external speed term is not
easily generalized beyond the region-based model of Mumford
and Shah [29]. This fact excludes a rich collection of external
speeds that may be essential to solving many problems of practical
importance. Second, the internal speeds in the multiphase frame-
work – comprising a penalty on contour length – are applied to
the level set functions rather than to the objects themselves. Thus,
it is possible that while the lengths of the level set functions are
minimized, it may not be so for the boundaries of the objects them-
selves. Third, the evolution/optimization can ‘‘get stuck’’ in situa-
tions where a pixel needs to acquire a label that can be reached
only by changing two level set functions at the same time. The
existing evolution strategy cannot resolve these situations, which
are also more commonly found with an increasing number of ob-
jects. A remedy for this limitation involving a permutation of the
level set combination rule used to represent a given label was pro-
posed in [30]. As the number of level set functions increases, how-
ever, a greater number of permutations will need to be performed
to ensure that transitions between all labels are possible.

Pohl et al. [21] proposed a probabilistic embedding to avoid
overlaps and gaps by replacing the level set isocontours with a
labeling of regions according to their maximum probability. In this
case, however, the geometric properties of curvature associated
with level set isocontours are no longer relevant, and the method
still requires N � 1 level sets or N � 1 functions derived from level
sets.

Brox and Weickert [24] presented a coupled curve evolution
method where distinct objects are constrained through the cou-
pling of the evolution equations rather than by changing the en-
ergy functional. Their coupled curve evolution shows that a pixel
(or voxel) in one object competes with other objects, while addi-
tional terms help to discourage gaps. This approach deals with
multiple objects, but it does not guarantee there are no overlaps
or gaps, making relationships and other topology constraints diffi-
cult to enforce. The evolution requires N level set functions for N
objects, increasing computational and storage burden as more
objects are added.

Recent methods by Lie et al. [31] and Chung and Vese [32] for-
mulate a ‘‘multilayer’’ method that represents multiple objects
using a small number of nested level contours of a function. This
approach is efficient with memory, requiring just two functions
to represent triple junctions in 2D. However, it shares with the
multi-phase approach a limitation in the types of speeds that
may be applied, a lack of control of topology, and the interpretation

of its regularization terms as minimizing level set length rather
than object boundary length [15]. These representations also lose
some of the computational advantages of using signed distance
functions.

Much interesting work has gone into adapting the level set for-
malism for multiple object segmentation to account for prior shape
information. Tsai et al. [22] developed a framework that constrains
potential segmentation results using a parametric shape model
based on principal component analysis. Uzunbas et al. [33] em-
ployed a similar framework, but built a statistical shape model
using kernel techniques and furthermore modeled relative poses
between objects. These methods used N level sets to represent N
objects, and therefore, a heuristic approach was used in both to
prevent overlaps. Vazquez-Reina et al. [34] used a shape model
similar to [22], but used the MP level set representation of [15],
rather than N level sets. This prevents overlap and gaps, and im-
proves efficiency, but still suffers from some of the setbacks of
the multiphase representation. Fussenegger et al. [35] extended
[24] with a multi-object pose-invariant shape prior. These methods
have been important contributions in constraining multiple object
level set segmentation. However, none of these methods guarantee
that single object topology, or topological relationships are pre-
served. The storage of N (or log2(N)) level sets along with the shape
priors may become burdensome as the number of objects
increases.

Markov random fields (MRFs) are graphical models that have
achieved great success in image segmentation. Classical algorithms
such as iterated conditional modes (ICM) [36] can provide approx-
imate solutions in the multiple label problem. Other methods have
been proposed that efficiently and accurately solve the Potts model
segmentation problem using advanced optimization techniques.
Zach et al. [37] presented a method that efficiently solves a contin-
uous relaxation of the Potts model. Lellmann et al. [38] solved a
similar formulation using an operator splitting optimization frame-
work. Bae et al. [39] performed optimization using a dual formula-
tion. While these methods all perform very well for a variety of
segmentation tasks, as presented they lack certain important capa-
bilities that aid in segmenting specific objects in images rather than
identifying image regions with similar features, (e.g., intensity). In
particular, these methods, as proposed, might segment ‘‘high inten-
sity’’ rather than ‘‘femur’’ in computed tomography. This specific
identification is important in medical imaging, for example, where
quantitative measurements of anatomy are often used for diagnosis
or research purposes. High level information such as object topol-
ogy, statistical priors, as well as partial volume functions have been
instrumental in advancing this area of image segmentation. Fur-
thermore, graph-based methods generally lack the sub-grid resolu-
tion offered by deformable models. The presentation of the above

Fig. 1. Various problems where images are to be segmented into multiple interacting objects: (a) an MRI of the abdomen, showing many organs; (b) fluorescent microscopy
imaging involving complex interactions of multiple cells; (c) a parcellation of the cortex into 78 gyral regions; (c) images and videos of sporting events where the different
players interact; (d) aerial images of crops and farmlands. These examples were obtained from computer vision and medical imaging databases [3,26,27] or our own work (c)
[28].
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