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This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS
as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements)
whose motions exhibit local spatiotemporal interdependency and stationarity, i.e., the motions are sim-
ilar in any small spatiotemporal neighborhood. Examples of DS abound in nature, e.g., herds of animals
and flocks of birds. To capture the local spatiotemporal properties of the DS, we present a probabilistic
model that learns both the spatial layout of swarm elements (based on low-level image segmentation)
and their joint dynamics that are modeled as linear transformations. To this end, a spatiotemporal neigh-
borhood is associated with each swarm element, in which local stationarity is enforced both spatially and
temporally. We assume that the prior on the swarm dynamics is distributed according to an MRF in both
space and time. Embedding this model in a MAP framework, we iterate between learning the spatial lay-
out of the swarm and its dynamics. We learn the swarm transformations using ICM, which iterates
between estimating these transformations and updating their distribution in the spatiotemporal neigh-
borhoods. We demonstrate the validity of our method by conducting experiments on real and synthetic
video sequences. Real sequences of birds, geese, robot swarms, and pedestrians evaluate the applicability
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of our model to real world data.
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1. Introduction

This paper is about modeling video sequences of a dense collec-
tion of moving objects which we will call swarms. Examples of dy-
namic swarms (DSs) in nature abound: a colony of ants, a herd of
animals, people in a crowd, a flock of birds, a school of fish, a
swarm of honeybees, trees in a storm, and snowfall. In artificial set-
tings, dynamic swarms are illustrated by: fireworks, a caravan of
vehicles, sailboats on a lake, and robot swarms. A DS is character-
ized by the following properties. (1) All swarm elements belong to
the same category. This means that the appearances (i.e. geometric
and photometric properties) of the elements are similar although
not identical. For example, each element may be a sample from
the same underlying probability density function (pdf) of appear-
ance parameters. (2) The swarm elements occur in a dense spatial
configuration. Thus, their spatial placement, although not regular,
is statistically uniform, e.g., determined by a certain pdf. (3) Ele-
ment motions are statistically similar. (4) The motions of the
swarm elements are globally independent. In other words, the mo-
tions of two elements that are sufficiently well separated are inde-
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pendent. However, this is not strictly true on a local scale because
if they are located too close compared to the extents of their dis-
placements, then their motions must be interdependent to pre-
serve separation. Thus, the motion parameters of each element
vs. the other elements can be considered as being chosen from a
mutually conditional pdf. Occasional variations in these swarm
properties are also possible, e.g. elements may belong to multiple
categories such as different types of vehicles in traffic. Fig. 1 shows
some examples of DS.

This definition of DS is reminiscent of dynamic textures (DT).
Indeed, a DS is analogous to a DT of complex nonpoint objects.
The introduction of complex nonpoint objects introduces signifi-
cant complexity: (1) Extraction of nonpoint objects becomes nec-
essary, whose added complexity is evident from, e.g., the
algorithm of [1]. (2) Motion for nonpoint objects is richer than
point objects, e.g., rotation and nonrigid transformations become
feasible. Since most work on DTs has focused on textures formed
of pixel or subpixel objects, DS is a relatively unexplored problem.
Tools for DS analysis should be useful for general problems such as
dynamic scene recognition, dynamic scene synthesis, and anomaly
detection, as well as, specific problems such as the motion analysis
of animal herds or flocks of birds. In this paper, we present an ap-
proach to derive the model of a DS from its video, and demonstrate
its efficacy through example applications. Before we do this, we
first review the work most related to DS, namely, that on DT.
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Fig. 1. Examples of swarms.

1.1. Related work

A DT sequence captures a random spatiotemporal phenomenon
which may be the result of a variety of physical processes, e.g.,
involving objects that are small (smoke particles) or large (snow-
flakes), or rigid (flag) or nonrigid (cloud, fire), moving in 2D or
3D, etc. Even though the overall global motion of a DT may be per-
ceived by humans as being simple and coherent, the underlying lo-
cal motion is governed by a complex stochastic model. Irrespective
of the nature of the physical phenomena, the objective of DT mod-
eling in computer vision and graphics is to capture the nondeter-
ministic, spatial and temporal variation in images.

As discussed earlier, although the basic notion of DTs allows
that both spatial and temporal variations be complex, the limited
work done on DT’s has focused on moving objects (texels) that
have little spatial complexity, even as they exhibit complex mo-
tion. The texels are of negligible size (e.g. smoke particles), whose
movement appears as a continuous photometric variation in the
image, rather than as a sparser arrangement of finite (nonzero) size
texels. Consequently, the DT model must mainly capture the mo-
tion and less is needed to represent the spatial structure.

Statistical modeling of spatiotemporal interdependence among
DT images serves as being closest to the work we present here. This
work includes the spatiotemporal auto-regressive (STAR) model by
Szummer and Picard [2] and multi-resolution analysis (MRA) trees
by Bar-Joseph et al. [3]. The DT model of Soatto et al. [4] uses a sta-
ble linear dynamical system (LDS). LDS mixture models have been
developed in [5] and applied to DT clustering and segmentation. A
bag-of-LDS model is proposed in [6] to account for view-invariance
in DT recognition. Furthermore, the basic LDS model is extended to
represent the incidence of multiple co-occurring DTs in the same
video sequence, thus, leading to a layered LDS model for video
[7,8]. In [9], a mixture of globally coordinated PPCA models is em-
ployed to model a DT. Moreover, a DT can be represented as a dis-
tribution of responses to spatiotemporal filters encoding oriented
structures, which are shown to be discriminative of different DT
classes [10]. Recently, the spatiotemporal variations in a DT has
been described using dynamic fractal analysis, which in turn has
shown great success in DT classification [11].

Along with their merits, the previously proposed models also
suffer from certain shortcomings. (i) These models make restrictive
assumptions about the DT sequences. Most of them assume that
there is a single DT covering each frame in the sequence, while

the others that consider multiple DT’s are usually limited to parti-
cle textures (e.g. water and smoke). Consequently, these models
cannot be easily extended to dynamic swarms. Even if the texels
were known beforehand, learning a separate model for each texel
does not guarantee the underlying spatiotemporal stationarity of
DS. (ii) They do not make a clear separation between the appear-
ance and dynamical models of the DT. The approach proposed in
[12] explicitly aims at this separation, but it is limited to fluid
DT’s only.

Another body of work that is related to our swarm motion mod-
els a DT as a set of dynamic textons (or motons) whose motion is
governed by a Markov chain model [13,14]. This generative model
is limited to sequences of particle objects (e.g. snowflakes) or ob-
jects imaged at large distances. The texton dynamics are con-
strained by the underlying assumptions of the model, which
state that all textons have the same frame-to-frame transforma-
tion, that this transformation is constant over time, and that the
dynamics of spatially neighboring textons are independent. While
this work does involve moving objects containing more than one
pixel per object as well as some interpixel spacing, its modeling
power still does not match the needs of properties (1-4) of a DS gi-
ven above.

In the rest of this paper, we refer to the objects forming a swarm
as swarm elements. We propose a probabilistic model that learns
both the spatial layout of the swarm elements and their joint
dynamics, modeled as linear transformations, which allow for a
clear separation between the appearance and dynamics of these
elements. This joint representation takes into account the interde-
pendence in the properties of elements that are neighbors in space
and time. This is done by enforcing stationarity only within spatio-
temporal neighborhoods. This local stationarity constraint allows
us to model DS sequences that not only exhibit globally uniform
dynamics (to which previous methods are limited), but also se-
quences whose element properties and dynamics gradually
change, in space and time.

1.2. Overview of proposed model

Given a DS sequence in which swarm elements undergo locally
stationary transformations, we iterate between learning the spatial
layout of these elements (their binary alpha mattes and frame-to-
frame correspondences) and their dynamics. We estimate swarm
dynamics such that they follow a probabilistic model that enforces
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