

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 755-759

Highly enantioselective Rh-catalyzed hydrogenations with heterocombinations of pentafluorobenzyl- and methoxybenzyl-derived binaphthyl phosphites

Benita Lynikaite^a, Ján Cvengroš^a, Umberto Piarulli^{b,*}, Cesare Gennari^{a,*}

^a Dipartimento di Chimica Organica e Industriale, Centro di Eccellenza C.I.S.I., Università degli Studi di Milano, Via G. Venezian, 21, 20133 Milano, Italy ^b Dipartimento di Scienze Chimiche e Ambientali, Università degli Studi dell'Insubria, Via Valleggio, 11, 22100 Como, Italy

> Received 20 November 2007; accepted 30 November 2007 Available online 4 December 2007

Abstract

The Rh-catalyzed hydrogenations of dimethyl itaconate and methyl acetamido acrylate using selected heterocombinations of pentafluorobenzyl- and methoxybenzyl-derived binaphthyl phosphites proved to be highly enantioselective (ee 93-99%). In these selected cases the Rh-heterocomplexes, which were formed in a statistical amount (ca. 50% by ³¹P NMR), turned out to be more active and selective than the two homocomplexes.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Phosphites; Asymmetric hydrogenation; Rhodium; Enantioselective catalysis

In recent years, monodentate phosphorus ligands have held the stage in asymmetric catalysis.¹ In addition to their outstanding activity and selectivity, comparable or even superior to those of bidentate ligands, their convenient, fast and practical synthesis from commercially available materials underlines their potential for industrial applications.² Furthermore, the simple preparation of the phosphite,³ phosphonite⁴ and phosphoramidite⁵ functional groups, which are the most frequently represented in monodentate ligands, allows for a facile variation of their design.

Still, the presence of a bidentate ligand is sometimes an inevitable requirement for a successful (stereo)chemical result. Supramolecular bidentate ligands, based on the self-assembly of monodentate ligands possessing complementary functionalities, thus represent a clever solution which combines the important features of bidentate ligands (preorganization and rigidity) with the economy and efficiency of monodentate ligands. 6

The non-covalent assembly of monodentate ligands reported so far in the literature relies mostly on coordinative bonding of nitrogen to zinc⁷ or hydrogen bonding.⁸ More recently, ionic interactions⁹ and the formation of inclusion complexes¹⁰ were exploited to bring monodentate ligands into close proximity. We felt intrigued by these approaches and decided to investigate other non-covalent interactions, that is, the perfluroarene-arene π - π interactions.

Perfluroarene-arene π - π interactions were observed for the first time in 1960.¹¹ Their relevance in the solid state has been confirmed several times since then,¹² and they have found widespread application in supramolecular design and crystal engineering.¹³ The contribution of perfluoroarenearene π - π interactions to the efficient photodimerization of olefins in the solid state was also investigated.¹⁴ On the contrary, only a few papers report a quantitative description of the perfluoroarene-arene π - π interactions in solution,¹⁵ and a few applications supposedly exploited them in solution-phase synthetic processes.¹⁶

^{*} Corresponding authors. Tel.: +39 025031 4091; fax: +39 025031 4072 (C.G.); tel.: +39 031238 6444; fax: +39 031238 6449 (U.P.).

E-mail addresses: umberto.piarulli@uninsubria.it (U. Piarulli), cesare. gennari@unimi.it (C. Gennari).

^{0040-4039/\$ -} see front matter \circledast 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.11.201

In this Letter we report the synthesis of a series of novel perfluroarene- and methoxyarene-derived phosphites, which were used to investigate (by ³¹P NMR) the possible formation of supramolecular bidentate ligands in the Rh-complexes via a non-covalent assembly induced by the perfluroarene-methoxyarene π - π interactions. Homo- and hetero-combinations of these ligands were used in enantio-selective Rh-catalyzed hydrogenations of dimethyl itaconate and methyl acetamido acrylate.

Two strategies were applied to the synthesis of the designed binaphthyl phosphites (Scheme 1). The commercially available methoxy substituted phenols were refluxed with PCl₃ to give the corresponding methoxy substituted-phenyl dichlorophosphites (Route A). Subsequent reaction with BINOL in the presence of Et₃N furnished the electron-rich phosphites (R)-1–(R)-3 (Fig. 1), which were obtained in moderate yields as pure compounds after chromatographic purification.

In the case of methoxy substituted benzylalcohols, an alternative approach (Route B) was followed. BINOL was thus treated with PCl₃ in the presence of a catalytic amount of NMP¹⁷ to give the corresponding binaphthyl chlorophosphite, which was then reacted with benzylalcohols in the presence of Et₃N to afford phosphites (*R*)-**4**–(*R*)-**8** (Fig. 1). The same protocol was used also for the synthesis

Scheme 1. Synthesis of benzylalcohol- and phenol-derived binaphthyl phosphites.

of the electron-poor phosphites (R)-9 and (S)-10, containing the pentafluorobenzyl moiety.

We thus synthesized a small library of eight electron-rich phosphites (including six BINOL and two octahydro-BINOL derivatives) and two electron-poor pentafluorobenzyl binaphthyl phosphites (Fig. 1).

With the ligand library in our hands, we proceeded with the ³¹P NMR investigations of perfluoroarene-methoxyarene $\pi - \pi$ interactions in the rhodium complexes. At first, the ³¹P NMR spectra of a single ligand in the presence of $Rh(acac)(eth)_2$ (L:Rh ratio = 2:1) were recorded revealing the fast formation of the corresponding homocomplexes L₂Rh(acac) (Fig. 2). Then two different ligands (one electron-rich and the other electron-poor) were mixed in the presence of the Rh source (ratio 1:1:1) and the formation of two homocomplexes and one heterocomplex was observed. The NMR spectra were recorded in a broad range of solvents (CDCl₃, THF-d₈, CD₃OD, *i*-PrOH/CD₃OD, CD_2Cl_2 , toluene- d_8 , CCl_4). In all these solvents, the observed ratio was essentially statistical within the experimental error $(RhL_AL_A:RhL_BL_B:RhL_AL_B = 1:1:2)$, which means that there is no detectable preference for the formation of the heterocomplex due to the methoxyarene-perfluoroarene interactions. In crystals featuring arene-perfluoroarene interactions, the packing energy is dispersion-dominated and coulombic terms are selective rather than quantitatively predominant.^{12f} This means that these interactions are likely to be very weak in solution.15b,c

Although we did not observe any relevant π - π -interaction between electron-rich and electron-poor ligands, we screened the library, using both homo- and heterocombinations of the ligands, in the Rh-catalyzed asymmetric hydrogenation of prochiral alkenes. Typically, the substrate was added to a stirred mixture of Rh(cod)BF₄ (1 mol %) and ligand [2 mol % (1:1 ratio in the case of heterocombinations)] in dichloromethane and the mixture was hydrogenated for 24 h at room temperature and pressure.

In the Rh-catalyzed asymmetric hydrogenation of dimethyl itaconate, the use of homocombinations of

Fig. 1. Library of phosphite ligands (isolated yields are reported in the brackets).

Download English Version:

https://daneshyari.com/en/article/5278747

Download Persian Version:

https://daneshyari.com/article/5278747

Daneshyari.com