Tetrahedron Letters 49 (2008) 820-823

Tetrahedron Letters

Highly regio- and stereoselective synthesis of tricyclic frameworks using Baylis-Hillman derivatives

Manickam Bakthadoss*, Nagappan Sivakumar, Govindan Sivakumar, Gandhi Murugan

Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India Received 6 October 2007; revised 17 November 2007; accepted 29 November 2007 Available online 5 December 2007

Abstract

A simple and convenient synthetic route for the synthesis of tricyclic chromeno[4,3-b]pyrrolidine frameworks using Baylis–Hillman bromides involving in situ formation of an imine, decarboxylation and a [3+2] cycloaddition sequence is described. © 2007 Elsevier Ltd. All rights reserved.

Keywords: Baylis-Hillman reaction; Intramolecular [3+2]cycloaddition; Azomethine ylides; 1,3-Dipolar cycloaddition; Tricyclic compounds

The Baylis-Hillman reaction is an atom economical, green and simple reaction which provides densely functionalized molecules. 1-4 As a result, Baylis-Hillman adducts have become valuable sources for making cyclic frameworks, especially tricyclic compounds containing heteroatoms. 5-7 The abundance of oxygen- and nitrogen-containing cyclic compounds in pharmaceuticals and agrochemicals continues to ensure that they are important synthetic targets for organic chemists.^{8–10}

Concerted [3+2] cycloaddition of azomethine ylides is a powerful tool for the construction of various types of complex polyheterocyclic frameworks. 11–14 In recent years the azomethine ylide has gained a vital place in the field of heterocyclic chemistry as it serves as an important building block for the construction of nitrogen-containing fivemembered heterocycles, which are often an integral part of many natural products and bioactive molecules.

Hillman chemistry, 15-17 we herein report a simple and convenient route for the synthesis of tricyclic chromeno [4,3-b]pyrrolidine frameworks from Baylis–Hillman bromides involving substitution followed by in situ formation of an imine, decarboxylation and a [3+2] cycloaddition

Baylis-Hillman adducts have been utilized for the synthesis of various heterocyclic compounds. 1-4 An efficient and short synthesis of complex organic molecules is a challenging task for organic chemists. To date Baylis-Hillman

Scheme 1. Retrosynthetic strategy for the synthesis of tricyclic frameworks.

In continuation of our interest in the field of Baylis-

sequence as shown in the retrosynthetic strategy described in Scheme 1. This type of tricyclic chromeno[4,3-b]pyrrolidine framework is known as a non-competitive antagonists of the muscular nicotine receptor. 18 Moreover, a similar tricyclic skeleton is present in martinelline, ¹⁹ a natural product isolated from Martinella iauitosensis.

Corresponding author. Tel.: +91 44 22202812; fax: +91 44 22352494. E-mail address: bhakthadoss@yahoo.com (M. Bakthadoss).

Scheme 2. R = H, 4-Me, 4-Et, 4- i Pr, 4-F, 2-Cl, 3-Cl, 4-Cl.

bromides have not been utilized for the synthesis of fused tricyclic chromeno frameworks via [3+2] cycloaddition. We envisaged that the *O*-allylic salicylaldehyde derivatives prepared from Baylis–Hillman bromides would be suitable precursors for the synthesis of substituted tricyclic frameworks containing a pyrrolidine unit via a key [3+2] cycloaddition reaction using sarcosine according to the retrosynthetic strategy shown below.

To demonstrate our approach, we first selected methyl (2Z)-2-(bromomethyl)-3-phenylprop-2-enoate (1a), a bromo derivative of the Baylis-Hillman (BH) adduct obtained via the reaction of benzaldehyde and methyl acrylate, as the starting material for the generation of the required precursor (3a) with a view to obtain the desired tricyclic chromeno pyrrolidine compounds. The best results were obtained when BH bromide 1a was treated with salicylaldehyde in the presence of K_2CO_3 in aceto-

nitrile for 1 h at room temperature to provide **3a** in 95% yield.

Reaction of **3a** and sarcosine without any catalyst in acetonitrile for 5 h at reflux provided successfully the desired tricyclic chromeno[4,3-*b*]pyrrolidine **4a** in very good yield (91%) after work up followed by column chromatography. Compound **4a** was characterized by IR, ¹H, ¹³C NMR and mass spectral data and by elemental analysis (Scheme 2 and Table 1).

Encouraged by this result, we prepared a variety of methyl (2*E*)-2-((2-formylphenoxy)methyl)-3-arylacrylates (3**b**-**h**). The treatment of compounds 3**b**-**h** with sarcosine led successfully to the desired fused tricyclic compounds 4**b**-**h** in 65–92% yields (Scheme 2). The results are summarized in Table 1.

To examine further the generality of the reaction and its applicability to the Baylis–Hillman bromides derived from

Table 1	
Synthesis of fused tricyclic compounds	from Baylis–Hillman derivatives 1a – m ²¹

Allyl bromide	R	Intermediate ^{a,b}	Yield ^c (%)	Product ^{b,d}	Yield ^c (%)
1a (CO ₂ Me)	Н	3a	95	4a	91
1b (CO ₂ Me)	4-Me	3b	87	4 b	72
1c (CO ₂ Me)	4-Et	3c	97	4c	68
1d (CO ₂ Me)	4- ⁱ Pr	3d	88	4d	69
1e (CO ₂ Me)	4-F	3e	92	4e	65
$1f(CO_2Me)$	2-Cl	3f	90	4f	92
$1g (CO_2Me)$	3-Cl	3 g	90	4g	72
1h (CO ₂ Me)	4-Cl	3h	79	4h	70
1i (CN)	Н	3i	88	4i	81
1j (CN)	3,4-Dimethoxy	3 j	84	4 j	90
1k (CN)	3-Cl	3k	85	4k	87
11 (CN)	4-Cl	31	91	41 ^e	95
1m (CN)	2,4-Dichloro	3m	93	4m	90

^a All reactions were carried out using 4 mmol of bromo compound 1a-m and 2-hydroxybenzaldehyde (4 mmol) in 15 mL of CH₃CN in the presence of K_2CO_3 (4 mmol) at room temperature for 1 h.

^b All products gave satisfactory IR, ¹H NMR (300 MHz), ¹³C NMR (75 MHz), mass spectral data and elemental analyses.

d All reactions were carried out using 2 mmol of intermediates 3a-m with sarcosine (2 mmol) in 8 mL of CH₃CN under reflux for 5 h.

^e Structures were further confirmed by single-crystal X-ray analyses.

Scheme 3. R = H, 3,4-di-OMe, 3-Cl, 4-Cl, 2,4-di-Cl.

^c Yields of the pure products (3a-m and 4a-m) obtained after column chromatography (silica gel, (3a-m) 5% EtOAc in hexanes, (4a-m) 10% EtOAc in hexanes).

Download English Version:

https://daneshyari.com/en/article/5278762

Download Persian Version:

https://daneshyari.com/article/5278762

Daneshyari.com