

Tetrahedron Letters 48 (2007) 6966-6969

Tetrahedron Letters

A simple and convenient method for the preparation of diborane from tetrabutylammonium borohydride and benzyl chloride for application in organic synthesis

Mariappan Periasamy,* G. P. Muthukumaragopal and Nalluri Sanjeevakumar

School of Chemistry, University of Hyderabad, Central University P.O., Hyderabad 500 046, India

Received 20 May 2007; revised 13 July 2007; accepted 25 July 2007

Available online 31 July 2007

Abstract—Diborane is readily generated in situ at 25 °C in toluene using the $Bu_4NBH_4/PhCH_2Cl$ and Bu_4NBH_4/I_2 reagent systems. The reagent prepared in this way is used for the reduction of carbonyl compounds and hydroboration—oxidation of olefins to obtain the corresponding alcohols in good yields. © 2007 Elsevier Ltd. All rights reserved.

The reactive forms of reducing agents such as LiBH₄ and diborane require solvents like THF, dioxane and diglyme. 1-4 However, these solvents have a high tendency to form peroxides. Also, it is difficult to recover these solvents after aqueous work-up. Aqueous or alcoholic solvents can be used in the case of NaBH4 but there are some limitations. Raber and Guida⁵ reported the reduction of carbonyl compounds by tetrabutylammonium borohydride (Bu₄NBH₄) in dichloromethane. However, an excess of reagent and a long reaction time was required for the completion of the reduction. Recently, it was reported from this laboratory that the CBS (Corey, Bakshi, Shibata) oxazaborolidine catalyst could be easily prepared from borane generated using Bu_4NBH_4/CH_3I and α,α -diphenyl-2-pyrrolidine methanol (DPPM) in THF.⁶ We have examined the use of other alkyl halides for the generation of diborane from Bu₄NBH₄, since methyl iodide is toxic. Accordingly, we carried out the reaction of Bu₄NBH₄ with benzyl chloride or iodine in toluene and diborane was readily generated in >90% yield in this way. We report here the reduction of aldehydes, ketones, carboxylic acids, acid chlorides and esters to the corresponding alcohols in good yields using these reagent systems. Also, the Bu₄NBH₄/PhCH₂Cl reagent system is useful for the

hydroboration—oxidation of olefins to give the corresponding alcohols in good yields.

The tetraalkylammonium borohydrides are readily soluble in organic solvents and they have low reactivity as reducing agents. It is considerably easier to handle these reagents compared to other metal borohydrides. For instance, they can be recrystallized from ethyl acetate. We have observed that the addition of benzyl chloride to tetrabutylammonium borohydride in THF at 25 °C for 30 min followed by addition of Ph₃P gives Ph₃P:BH₃ (11 B NMR: δ –37.6 ppm) in 90% yield. This indicates the formation of borane in the reaction of Bu₄NBH₄ with PhCH₂Cl (Scheme 1).

The Bu₄NBH₄/PhCH₂Cl system also provides a convenient source of diborane gas. This method can be used for preparing various Lewis acid–BH₃ complexes. For example, Ph₃P:BH₃ can be prepared in 90% yield by passing B₂H₆, generated by Bu₄NBH₄/PhCH₂Cl in toluene, through a solution of Ph₃P in THF. We have also observed that the diborane generated in this way

$$Bu_4NBH_4 \xrightarrow{PhCH_2Cl} H_3B:THF + Bu_4NCl + PhCH_3$$

$$H_3P \xrightarrow{Ph_3P} Ph_3P$$

$$Ph_3P:BH_3$$
90% yield

Scheme 1.

Keywords: Tetrabutylammonium borohydride; Reduction; Hydroboration; Oxidation.

^{*}Corresponding author. Tel.: +91 40 23134814; fax: +91 40 23012460; e-mail: mpsc@uohyd.ernet.in

effectively reduces various functional groups such as aldehydes, ketones, carboxylic acids and acid chlorides readily at 25 °C (Scheme 2, Tables 1 and 2). However, esters required 12 h for completion of the reaction. The process is simple and amenable to scale-up.

We also observed that addition of a small amount of THF (2 mL) was advantageous. It is also very important to note that the tetraalkylammonium halide by-product can be readily removed and recovered from the reaction products. The recovered tetraalkylammonium halide can be used directly for the preparation of tetraalkylammonium borohydride, which makes this method economical.

Diverse hydroborating agents such as BH₃:THF, BH₃:S(CH₃)₂ 9-BBN and thexylborane are available

commercially. However, each has limitations and all are air sensitive. ¹¹ Previously, hydroboration of olefins has been reported using tetrabutylammonium borohydride in chloroform under refluxing conditions. ¹² The $R_4N^+BH_4^-/Me_3SiCl$ system has been used for the conversion of olefins to alcohols without any oxidizing agent. ¹³ We have observed that the $Bu_4NBH_4/PhCH_2Cl$ reagent system can be used for hydroborating olefins under ambient conditions in toluene/THF mixture and the corresponding alcohols were obtained in good yields after H_2O_2/OH^- oxidation (Scheme 3, Table 3).

In conclusion, the Bu₄NBH₄/PhCH₂Cl and Bu₄NBH₄/I₂ reagent systems were used for reduction of various carbonyl compounds to the corresponding alcohols under mild conditions and in good yields (82–94%). These reagents are also useful for the hydroboration of

Scheme 2. Reduction of representative carbonyl compounds with Bu₄NBH₄/PhCH₂Cl and Bu₄NBH₄/I₂.

Table 1. Reduction of representative carbonyl compounds with Bu₄NBH₄/PhCH₂Cl⁸

Entry	Substrate ^a		Time (min)	Product ^b	•	Yield ^c (%)
1	СНО	1a	15	CH₂OH	6a	86
2	СНО	1b	15	CH ₂ OH	6b	92
3	MeO	1c	30	MeO CH ₂ OH	6с	91
4	O CH₃	2a	15	OH CH₃ OH	7a	91
5	CI CH ₃	2b	15	CI CH ₃	7b	94
6	<u> </u>	2c	90	—ОН	7c	82
7	СООН	3	120	CH₂OH	6a	89
8	CH ₂ COCI	4	15	CH ₂ CH ₂ OH	8	90
9	CH ₂ CO ₂ Me	5	720	CH ₂ CH ₂ OH	8	82

^a All the reactions were carried out on 5 mmol scale with 7 mmol of the Bu₄NBH₄/PhCH₂Cl reagent.

^b Products were characterized by IR, ¹H NMR, ¹³C NMR and by comparison with reported data. ⁹

^c Yields of isolated products.

Download English Version:

https://daneshyari.com/en/article/5279195

Download Persian Version:

https://daneshyari.com/article/5279195

<u>Daneshyari.com</u>