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a b s t r a c t

We propose an unsupervised multiphase segmentation algorithm based on Bresson et al.’s fast global
minimization of Chan and Vese’s two-phase piecewise constant segmentation model. The proposed algo-
rithm recursively partitions a region into two subregions, starting from the largest scale. The segmenta-
tion process automatically terminates and detects when all the regions cannot be partitioned further. The
number of regions is not given and can be arbitrary. Furthermore, this method provides a full hierarchical
representation that gives a structure of a given image.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Image segmentation aims to partition an image domain into dif-
ferent regions in a meaningful way. Edge-based active contours
methods [8,4,9] pose segmentation as an energy minimization
problem and use edge detection functions that are based on local
features to evolve contours towards object edges. Region-based
active contours models incorporate both regions and edges to find
a partition. Our proposed algorithm takes a region-based active
contours approach because it is robust to noise and based on more
global features. One of the early efforts towards region-based ac-
tive contours was made by the Mumford and Shah segmentation
model [11], which approximates a given image by a piecewise
smooth image. However, the posed energy minimization problem
is difficult to solve. Zhu and Yuille [17] use a family of Gaussian
distributions to describe each region’s data, i.e. mean and variance,
and determine the boundaries of regions by competing with neigh-
boring regions to best fit models at the largest possible areas. Their
proposed energy minimization problem is also in general difficult
to solve. Chan and Vese [6] proposed to solve a two-phase piece-
wise constant segmentation model, which is a variant of the Mum-
ford and Shah model. The novelty of Chan and Vese is the use of the
level set method to represent the evolving curve. The minimization
is conveniently obtained by the gradient descent of the Euler-
Lagrange equation of the energy functional.

The extension from the celebrated Chan and Vese’s two-phase
segmentation model to multiphase segmentation is not so natural,
which is due to the nature of level sets. Several attempts have been
made towards this extension. Vese and Chan [16] use n level set
functions to represent 2n regions because each level set function
splits the image domain into two. This method implicitly repre-
sents the constraint of disjoint regions so no coupling forces are
needed in order to constrain disjoint regions. However, when the
number of regions is not a power of two, extra work has to be done.
Chung and Vese [7] use only one level set function but with level
lines other than the zero-level line to represent contours. This
method can represent n regions and the constraint of disjoint re-
gions is also implicitly dealt with. However, their model cannot
deal with triple junctions and the authors suggest combining their
method with the Vese and Chan model to overcome this problem.
Lie et al. [10] introduce to segmentation a piecewise constant level
set function to represent each phase with a constant value. The
piecewise constant constraint on the level set function is solved
by using the augmented Lagrangian. Their level set method does
not require re-initialization that is necessary for the classical level
set method. However, extra work, as described in their paper, is
needed for noisy images. The segmentation methods described
above do not require any training set but the number of regions
or at least an upper bound has to be given.

Brox and Weickert [3] use one level set function for each region
to represent Zhu and Yuille’s model. Brox and Weickert propose
using a coupled curve evolution to solve this multiphase segmen-
tation model but assume the number of regions is known. They
also propose to automatically find the number of regions by a
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coarse-to-fine strategy coupled with a hierarchical splitting. The
authors apply a two-phase segmentation on a subregion, and if
the Zhu and Yuille’s energy functional is lowered, they continue
this segmentation. This is repeated for all regions until the Zhu
and Yuille’s energy functional cannot be lowered. The number of
phases obtained by this procedure is used in their multiphase seg-
mentation model. Sandberg et al.’s piecewise constant segmenta-
tion model [13] automatically determines the number of regions
and finds partitioning simultaneously. In the energy functional,
they introduce a feature balancing term, the sum of all the inverse
of region scales from each region, which is used to implicitly penal-
ize the number of regions in addition to the total length of the
boundaries. The region scale of a region is the quotient of its area
and perimeter. Their model can be easily solved by a pixel-wise
decision algorithm which implicitly deals with the disjoint con-
straint on all phases. This minimization method is very efficient
but not robust to noise.

The followings are a few supervised multiphase segmentation
models, although the focus of this work is an unsupervised meth-
od. Samson et al. [20] assume the number of regions is known, as
well as the average intensity and variance in each region. Their
model represents each region by a level set. Their proposed energy
functional consists of three terms to enforce data fidelity, the reg-
ularity of the interface, and the constraints on no vacuum and
overlapping of regions. Aujol and Chan [1,19] proposed a super-
vised classification framework for images with both textured and
nontextured areas. The given image is first decomposed into a tex-
ture part and a geometric part. The data terms for the geometric
part and texture part are treated by Samson et al.’s method and a
wavelet-based level set evolution method [24]. Then, they use a lo-
gic framework to combine the results in a user definable way.

In this paper, we provide a spatial enclosure relationship between
higher-level and lower-level regions so that one can analyze an im-
age at a certain level of scale. Scale is related to contrast and region
scale, and we use the definition of the TV scale in [18,21], which is de-
fined as the time taken for a feature to disappear under the total var-
iation flow. Tu and Zhu [15] consider segmentation a computing
process rather than a vision task. The more one looks at an image,
the more one sees. Therefore, segmentation results are not universal.
We provide a ‘‘structure” of an image because that is how an image is
usually interpreted. Following this idea, we propose to start from the
coarsest partitioning and then refine each partitioning individually.
Our proposed multiphase piecewise constant segmentation first ap-
plies the Chan and Vese model to partition an image domain into two
and then recursively applies the Chan and Vese model in each parti-
tioned region. This procedure gives a structure of an image implicitly
utilizing the notion of ‘‘saliency” [14] that involves scale and inten-
sity contrast in its determination. We additionally propose some
stopping conditions to terminate the two-phase segmentation on
the indicated region when it becomes meaningless to partition fur-
ther. The stopping conditions use region scale and contrast to detect
oversegmentation.

Fast Level Set Transform (FLST) [22,23] also provides a hierar-
chical representation of an image but is different from our algo-
rithm. FLST uses a bottom-up region-growing algorithm to
compute the family of lower (resp. upper) level sets with the
increasing (resp. decreasing) inclusion property. With these inclu-
sion properties, an image can be fully represented into a tree. Since
their method is based on a local image feature, it is sensitive to
noise; and therefore, a threshold is used to detect noise. Our pro-
posed algorithm uses a top-down approach by recursively seg-
menting a region into two with a region-based model that is
intrinsically robust to noise. In [22,23], an effective algorithm uses
FLST and decomposes an image into a tree of shapes based on con-
nected components of the level sets. A major advantage of this
algorithm is due to the observation that with only intensity, the

level set of an object may have undesired holes (closed level sets)
inside their region; and their method is able to recognize the shape
of the object without holes in it. Our algorithm does not assume
this prior and on the other hand the segmentation process follows
the notion of scale that is defined in the previous paragraph.

2. Two-phase piecewise constant segmentation on an indicated
region

In this section, we first describe previous two-phase piecewise
constant segmentation models and then present a natural exten-
sion to partition any given subregions that may be of arbitrary
shapes. Let f : X! ½0; L� be the given grey-scale image. A two-
phase piecewise constant version of the Mumford–Shah model
[11] evolves a curve C towards the boundary between two regions
and approximates f by two constants c1 and c2 inside the curve C
and outside the curve C, respectively. The Chan and Vese model
[6] is following energy minimization problem:

inf
C;c1 ;c2

E1½C; c1; c2� ¼
Z

C
dsþ k

Z
insideðCÞ

ðc1 � f ðxÞÞ2 dx

(

þ k
Z

outsideðCÞ
ðc2 � f ðxÞÞ2 dx

)
; ð1Þ

where the first term measures the total length of the curve C to
penalize complicated interface between two regions and k is a sca-
lar parameter that controls the balance between regularization and
data. This model can be represented in the following level-set
formulation:

inf
/;c1 ;c2

E1½/;c1;c2� ¼
Z
jrHð/ðxÞÞjdx

�

þ k
Z

Hð/ðxÞÞðc1� f ðxÞÞ2 dxþk
Z
½1�Hð/ðxÞÞ�ðc2� f ðxÞÞ2 dx

�
; ð2Þ

where H is the Heaviside function and / is a level set function [12]
such that / > 0 inside C and / < 0 outside C. The minimization of
this level set formulation can be solved naturally by the standard
PDE method [6] and allows topological changes of the curve. How-
ever, this model is not convex and thus a reasonable initialization is
necessary to avoid getting stuck at undesired local minima. Chan
et al. [5] proposed a convex model that solves (1).

Based on [5], Bresson et al. [2] proposed a fast global minimiza-
tion of the Chan and Vese model. There are two major advantages
of their algorithm. The first is that the initialization can be arbi-
trary. The second is that the solutions can be obtained much faster
than the standard PDE method. Bresson et al.’s model is the follow-
ing minimization problem:

min
u;06v61;c1 ;c2

E2
X½u; v; c1; c2� ¼ TVXðuÞ þ

1
2h
ku� vkL2ðXÞ

�

þ k
Z

X
vðxÞðc1 � f ðxÞÞ2 þ ½1� vðxÞ�ðc2 � f ðxÞÞ2 dx

�
; ð3Þ

where h is small enough so that u and v are significantly close to
each other, k is a parameter controlling the data fidelity term, and
the total variation of u is defined in the following:

TVXðuÞ¼ sup
Z

X
udivp dxjp2C1

c ðX;R2Þ : jpðxÞj61; 8 x2X
� �

: ð4Þ

If u� ¼ argminE2
X½u; v; c1; c2�, the partition can be chosen to be, for in-

stance, fu� P 0:5g and fu� < 0:5g. Let rðx; c1; c2Þ ¼ ðc1 � f ðxÞÞ2�
ðc2 � f ðxÞÞ2. The minimization is solved by alternating the following
equations [2]:
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