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a b s t r a c t

This paper presents the decentralized state estimation problem of discrete-time nonlinear systems with

randomly delayed measurements in sensor networks. In this problem, measurement data from the sensor

network is sent to a remote processing network via data transmission network, with random measure-

ment delays obeying a Markov chain. Here, we present the Gaussian-consensus filter (GCF) to pursue a

tradeoff between estimate accuracy and computing time. It includes a novel Gaussian approximated filter

with estimated delay probability (GEDPF) online in the sense of minimizing the estimate error covari-

ance in each local processing unit (PU), and a consensus strategy among PUs in processing network to

give a fast decentralized fusion. A numerical example with different measurement delays is simulated to

validate the proposed method.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Considerable research has been undertaken in the field of es-

timation theory in relation to the discrete-time nonlinear systems

over the past several decades due to its widespread applications

in process control [1,2], signal processing [3], fault detection and

isolation [4], integrated navigation [5] and target tracking [6,7]. In

general, the minimum-mean-square-error estimator for nonlinear

systems is almost always intractable in the Bayesian view [8], and

hence much attention has been paid on approximation strategies

for designing cost-effective estimators. One strategy is the function

approximation, i.e., nonlinear dynamic/measurement functions are

replaced by piece-wise time-varying linear functions, including the

extended Kalman filter [8] via Taylor expansion, the central differ-

ence filter [9] based on derivative operation and the divided differ-

ence filter [10] based on interpolation polynomial. Generally speak-

ing, function-approximation estimators are computation-effective

but sensitive to linearized errors or differential operations. An al-

ternative strategy is the density approximation, i.e., the conditional

state probability density function is represented as a Gaussian or

Gaussian mixture distribution [11,12]. This density-approximation

strategy results in the integrated framework of analytical compu-

tation and numerical integration. Through choosing different nu-
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merical integration schemes, the computation burden and estima-

tion accuracy can be balanced. Up to now, the resultant filters

are also called Gaussian Approximated Filters (GAFs) including the

unscented Kalman filter (UKF) [13] based on unscented transfor-

mation, the Gauss-Hermite Filter (GHF) [14] based on Gaussian-

Hermite quadrature rule, the new quadrature Kalman filter [15]

based on statistical linear regression, the square-root quadrature

Kalman filter [16] based on matrix triangularization, the cubature

Kalman filter (CKF) [17] based on spherical-radial cubature rule. In

general, all these GAFs are limited in the delay-free scope, i.e., the

measurement arrives on time.

However, in many actual situations, measurements may arrive

at the data processing center with random delays. For example, in

a networked multi-sensor remote-sensing system, sensors may be

geographically far away from estimators/controllers and hence the

random measurement delay is definitely inevitable due to limited-

capability data transmission or additional routing. It motivates the

research on state estimation with randomly delayed measurements

[18–20]. A stochastic extended Kalman filter was presented for in-

terconnected power systems with partially or totally delayed mea-

surements [21]. The extended and unscented filters were pro-

posed for a class of nonlinear discrete-time stochastic systems with

one-step Bernoulli random measurement delay [22]. Moreover, via

Gaussian approximations of the one-step posterior predictive prob-

ability density functions of state and delayed measurement, a novel

GAF was proposed for a nonlinear stochastic systems with one-

step randomly Bernoulli delayed measurements [23]. Similarly, the

corresponding Gaussian smoother was also derived [24]. A new
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unscented filtering was presented for a class of nonlinear stochas-

tic systems with random measurement delays less than three time

instants, and this result was extended to deal with multi-step

Bernoulli delayed measurements [25]. In general, all these methods

have the common assumption that the delay should be Bernoulli

distributed with known probability. However, such an assumption

may not hold since, in network-based data transmissions, time de-

lays typically occur in a batch mode, and the transition from one

mode to another may obey a certain probability distribution [26].

Meanwhile, random delays in a networked system may exhibit the

feature that the occurrence of current delay depends on its pre-

vious delay [27]. Therefore, a seemingly more realistic assumption

is that the switching between random delays at adjacent instants

abides by a Markov chain, which includes the Bernoulli assump-

tion as a special case [28]. Furthermore, above discussed meth-

ods for nonlinear systems with randomly delayed measurements

all require centralized processing, i.e., measurements, maybe from

different sources, should be collected together and then processed

at a fusion center. Actually, the delay occurs inevitably by com-

putation sources being far away from sensors in remote sensing

or control. At the same time, many computing units may be de-

ployed, constituting a network in order to accommodate massive

sensor data processing. Therefore, it is necessary to develop a de-

centralized processing and fusion method.

So far, to the best of authors’ knowledge, the state estimation

and decentralized fusion for nonlinear systems with random mea-

surement delays obeying a Markov chain in sensor networks has

not been investigated, which motivates us to formulate this new

problem. In the considered problem, sensor data collected by a

sensor network is sent to a processing network via transmission

network. The data transmission incurs the random delay and hence

leads to the existence of multi-mode uncertainties and stochas-

tic parameters which are coupled with system nonlinearity and

stochastic noises.

The technical contributions of this paper are as follows. Firstly,

a Markov process is utilized to depict the random measurement

delay in each processing unit (PU). Such modeling is more gen-

eral and practical, by the fact that the Markov process includes

the Bernoulli process which is a widely-accepted random delay

model in existing researches [22,23,25] as a special case and can

exploit the relationship of delays at adjacent sampling instants

[26,27]. Secondly, a novel and generalized GAF with estimated de-

lay probability (GEDPF) is derived for local state estimation in

each PU. Here, the delay probability is unknown and even time-

varying instead of being known in [22,23,25]. Meanwhile, the de-

rived GEDPF will be degraded to the common GAF in [14] if there

is no delay, or the GAF in [23] if the delay is one-step Bernoulli

distributed with known probability. Thirdly, the derived GEDPF

is based on lower-dimensional state augmentation, which leads

lower-dimensional matrix calculations and Gaussian approxima-

tions, compared with the unscented filtering with multi-step ran-

dom delays in [25]. Fourthly, combined with consensus strategy,

the proposed Gaussian-consensus filter (GCF) gives a decentralized

fusion implementation with random measurement delays, which

has never been investigated for existing filters with delayed mea-

surements in [22,23,25] or consensus filters for networked sensors

[29–31].

The rest of this paper is organized as follows. The problem for-

mulation is presented in Section 2. The GEDPF is derived for non-

linear systems with randomly delayed measurements and the GCF

is further presented in the processing network in Section 3. A nu-

merical example is simulated in Section 4 to validate the proposed

method. Finally, the conclusion is supplied in Section 5. All proofs

are presented in the Appendix.

Notation: Throughout this paper, superscripts “−1” and “T” rep-

resent the inverse and transpose operation of matrix, respectively.

I and O denote the identity and zero matrices of appropriate di-

mensions, respectively. The symbol “ := ” means definition. E(·)
and cov(·) denote mathematical expectation and covariance cal-

culation, respectively. (·) denotes the same content as that in the

previous parentheses. The Gaussian distribution N(℘ρ ;℘̂ρ|k, P
℘℘

ρ|k) is

denoted by Gρ|k(℘). ‖ · ‖ denotes the 2-norm of a vector.

2. Problem formulation

Consider the problem of multi-sensor state estimation for a

nonlinear dynamic process as shown in Fig. 1. The whole system

contains a sensor network, a transmission network and a process-

ing network. Here, the sensor network contains a large number

of clustered sensor nodes to detect and collect state information.

Then, the transmission network is in charge of sending sensor

measurements to buffers, and measurements are subjected to ran-

dom delays in transmission. The processing network is constituted

by many PUs, and each PU obtains a localized estimate based on

the newly-received delayed measurements from its corresponding

sensor cluster and exchanges its estimate with its neighbors for

estimation consensus.

Here, the random delay may exhibit the feature that the occur-

rence of current delay depends on its previous delay [27], or the

transition from one delayed step to another may obey a certain

probability distribution [26]. Thus, a practically random process to

describe this delay is the first-order Markov process.

Motivated by this, we formulate a new estimation problem as

follows:

nonlinear dynamical process : xk+1 = fk(xk) + wk, (1)

the sampled measurement in a sensor node :

zk+1 = hk+1(xk+1) + vk+1, (2)

where wk and vk are uncorrelated zero-mean Gaussian, white

noises satisfying E(wkwT
t ) = Qkδkt and E(vkvT

t ) = Rkδkt , respec-

tively, with δkt being the Kronecker delta function. Meanwhile, the

initial state is a Gaussian random vector with mean x0 and covari-

ance P0, being uncorrelated with wk and vk.

In an ideal condition, a sensor measurement is transmitted to

the corresponding buffer and taken out in time for local state esti-

mation in processing network. However, sensors may be far away

from buffers or buffers may be far away from estimators, and

the measurement may arrive after the corresponding state esti-

mation in several steps. Thus, random measurement delay due to

data transmission and relay or network congestion is definitely in-

evitable. Consider the case that any induced latency from a sensor

to an estimator in the mth PU is not more than sm-step sampling

period, we will obtain the following measurement output from the

corresponding buffer:

the received meaurement in the mth PU :

ym
k+1 =

min(k+1,sm)∑
j=0

γ m
j,k+1zm

k+1− j, (3)

where zm
k+1− j

is the sampled measurement from the correspond-

ing sensor node. sm denotes the maximum delay step in the mth
PU. γ m

j,k+1
is a 0-1 binary random variable obeying a discrete-time

Markov chain with the switching probability:

P
{
γ m

j,k+1 = 1|γ m
i,k = 1

}
= λm

ij,k+1, i, j = 0, 1, · · · , sm, m = 1, · · · , M.

(4)

Meanwhile, assume that the newly-received measurement yk+1 is

only from one sampling instant, and hence the following constraint
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