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a b s t r a c t

We introduce the idea of a measure. We describe several important finite integrals useful for obtaining an

average value of a collection of argument values weighted by a measure. We particularly look at the case of

binary measures and show that all integrals in this case evaluate to the same value. We describe the use of

measures in multi-criteria decision making as a way of expressing a decision maker’s objective function in

terms of collection of relevant criteria. We look at the role of an integral as a way to evaluate an alternative’s

overall satisfaction to their objective function in terms of its satisfaction to the individual criteria. We look at

a number of special types of measure based decision objective functions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multi-criteria decision problems are pervasive. They arise in such

common tasks as deciding what journal you want to submit a paper

to and such complex tasks as a drone tracking a target. In these appli-

cations the decision maker has some objective related to a relevant

set of multiple criteria. In many cases the decision maker’s objective

function can be expressed in terms of a fuzzy measure μ over the set

of multiple criteria. Here we focus on the use of a measure to repre-

sent these decision maker objective functions. For example in decid-

ing which journal to submit his paper a researcher may consider the

following criteria relevant high impact factor, fast review time and

good chance for acceptance. One formulation for his objective func-

tion may be to select a journal that satisfies all these criteria. Another

formulation for his objective could be to associate with each criterion

an importance weight and then look for the alternative that provides

maximal weighted satisfaction to his criteria. As will be clear either

of these objectives can be expressed in terms of a fuzzy measure over

the set of criteria.

In addition to their objective function a decision maker has avail-

able a collection of possible alternative actions that they can take.

Here we must decide which alternative action to choose, based upon

its satisfaction to the decision maker’s objective function as mani-

fested through an alternatives satisfaction to the individual criteria.

We describe how we can obtain the satisfaction of an alternative to

the decision maker’s objective function by calculating the integral,

with respect to the measure μ, of the alternatives satisfactions to rel-

evant criteria. Here the integral provides a kind weighted average of
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individual criteria satisfactions were the weights are determined by

the fuzzy measure modeling the decision maker’s objective function.

A number of researchers have worked on issues related to fuzzy

measures in multi-criteria decision making among these are the fol-

lowing; Greco [1–4], Grabisch [5–7], Bustince [8,9], Torra [10,11] and

Marichal [12].

The paper is organized as follows. We introduce the concept of a

fuzzy measure and describe some of its properties. We provide some

integrals that can be used for aggregating a collection of argument

values weighted by a measure. We then discuss how fuzzy measures

can be used in multi-criteria decision making to model a decision

maker’s objective function in terms of collection criteria. We then

look at the role of some notable measures in context multi-criteria

decision-making.

2. Fuzzy measures and their integrals

A fuzzy measure [13–16] on a finite space X = {x1, … , xn} is a map-

ping μ: 2X → [0, 1] having the properties:

1. μ(∅) = 0, 2. μ(X ) = 1 and 3. μ(A) � μ(B) if A ⊃ B

Thus a measure associates with subsets of X a value from the unit

interval that is monotonic in the sense that a smaller set cannot have

a bigger value than a larger set. In the following we shall follow the

policy of simply using the term measure with the understanding that

we are referring to a fuzzy measure.

The prototypical example of measure is the additive mea-

sure. Here each element xj has an associated value α j � 0 where∑n
j=1 α j = 1. For this additive measure for any subset A, μ(A) =∑
x j∈A α j . One special case of additive measure is one where

http://dx.doi.org/10.1016/j.inffus.2015.07.007

1566-2535/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.inffus.2015.07.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/inffus
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2015.07.007&domain=pdf
mailto:yager@panix.com
http://dx.doi.org/10.1016/j.inffus.2015.07.007


106 R.R. Yager / Information Fusion 29 (2016) 105–111

α j = 1/n for all xj. Another special case of additive measure is one

in which αk = 1 and α j = 0 for all j �= k.

Assume μ1 and μ2 are two measures on the space X if μ1(A) �
μ2(A) for all A we say μ1 � μ2,μ1 is bigger than μ2. At times, in this

work, we shall find it convenient to say that μ1 is more optimistic

than μ2 if μ1 � μ2.

If μ is a measure on X we define its dual as a measure μ̂ : X →
[0, 1] defined so that μ̂(A) = 1 − μ(A). We note duals come in pairs

in that ̂̂μ(A) = μ(A).

The two special measures are μ∗ defined such that μ∗(∅) = 0 and

μ∗(A) = 1 for A �= ∅ and the measure μ∗ defined such that μ∗(X) = 1

and μ∗(A) = 0 for A �= X. These are respectively the biggest and small-

est measures, that is for any measure μ we have μ∗ ≤ μ ≤ μ∗. We

also note that μ∗ and μ∗ are duals.

Another interesting special class of measures are the cardinality-

based measures. For these measures the value of μ(A) just depends

on the number of elements in μ, independent of which elements are

in A. More formally we can define a cardinality-based measure in

terms of a collection of parameters, 0 = β0 ≤ β1 ≤ . . . βn−1 ≤ βn = 1

so that μ(A) = β|A| where |A| is the cardinality of A.

We observe that μ∗ and μ∗ are cardinality-based measures. Also

the additive measure where α j = 1/n for all xj is also a cardinality-

based measure.

In [17] Yager investigated a number of operations can be used to

obtain measures from other measures. Assume μ1 is a measure on X

and F: [0, 1] → [0, 1] is such that.

(1) F(0) = 0

(2) F(1) = 1

(3) F(a) � F(b) for a > b

then μ defined such that μ(A) = F(μ1(A)) is a measure.

An important special case of this is one in which μ1 is an additive

measure. Torra referred to this as deformed additive measures [14].

Assume for j = 1 to q that μ j are a collection of measures on X and

G is an aggregation operator. Then μ defined such for all A ⊆ X

μ(A) = G(μ(A), . . . ,μq(A))

is a measure. We recall an aggregation operator G is a function of q >

1 arguments G: [0, 1]q → [0, 1] having the properties [18]

G(0, 0, . . . , 0) = 0

G(1, 1, . . . , 1) = 1

G(a1, . . . , aq) � G(b1, . . . , bq) if aj � bj for all j

A prototypical example of an aggregation operator is in the

weighted average, G(a1, … , aq) = ∑q
j=1

w ja j where wj ∈ [0, 1] and∑q
j=1

w j = 1. There are many other examples of aggregation oper-

ators, among the most notable are t-norms, t-conorms and OWA

operators [18,19].

Theorem. Assume μi are a collection of q additive measures

on X such that μi({xj}) = λi j . Let μ be a measure defined

as μ(A) = G(μ1(A), . . . ,μq(A)) = ∑q
i=1

wiμi(A) where wi ∈ [0, 1]

and sum to one. Then μ is also an additive measure with

μ({xj}) = ∑q
i=1

wiλi j . Furthermore if A be any subset of X then

μ(A) =
q∑

i=1

wiμi(A) =
q∑

i=1

(
wi

∑
j∈A

λi j

)
=

∑
j∈A

q∑
i=1

wiλ j =
∑
j∈A

μ({x j}).

Theorem. Assume μi are a collection of q cardinality-based measures

on X such that βik is the measure of μi for a set of cardinality k. Assume

wi is a collection of q weights such that each wi ∈[0, 1] and their sum is

one. If μ be a measure defined such that for any subset A

μ(A) = G(μ1(A), . . . ,μq(A)) =
q∑

i=1

wiμi(A))

then μ(A) is a cardinality-based measure with parameters βk =∑q
i=1

wiβik.

Proof. For any A we have μ(A) = ∑q
i=1

wiμi(A) = ∑q
i=1

wiβi|A|.

Let f be a function so that f: X → [0, 1], it associates with each el-

ement in X a value in the unit interval. An integral provides a way

for obtaining a weighted average of values of f(xi) with respect to a

weighting of the xj determined by a measure μ. We shall generically

denote this as Intμ(f). One property we desire of these integrals, is

monotonicity, if f1 and f2 are such that f1(xi) ≥ f2(xi) for all xi then

we desire that Intμ(f1) ≥ Intμ (f2). We also want these integrals to

be mean like [20] with respect to value of f. In particular we want

boundedness, Minj[f(xj)] ≤ Intμ(f) ≤ Maxj[f(xj]. An implication of this

boundedness is idempotency, of all f(xj) = a then Intμ(f) = a. The in-

tegral of f with respect to μ, Intμ(f) is a mean type operation and

can be seen as a representative value of f. In [21] Klement, Mesiar,

Spizzichino and Stupnanová provide a whole class of these integrals.

Wang, Yang and Leung [22] provide a comprehensive discussion of

these integrals.

One common form of integral of f with respect to the measure μ
is the Choquet integral, Choqμ(f) [22,23]. In describing this and other

integrals we shall find it convenient use an index function π so that

π (j) is index of the value of xi having the jth largest value of f(xi).

Here then f(xπ (j)) is jth largest value of f(x). Using this index function

we have

Choqμ( f ) =
n∑

j=1

(μ(Hj) − μ(Hj−1)) f (xπ( j))

where Hj = {x π (k)/k = 1 to j}, it is the subset of elements in X hav-

ing the j largest values of f. One interesting feature of this integral is

that it essentially provides a simple weighted average of the f(xπ (j)).

We see this easily if we denote wj = μ(Hj) − μ(Hj−1) and since

μ(Hj) − μ(Hj−1) ≥ 0 these are non-negative and since
∑n

j=1 w j =
μ(X ) − μ(∅) = 1. We also note that with a little algebra and using

the convention that f (xπ(n+1) = 0 we can show that

Choqμ( f ) =
n∑

j=1

( f (xπ( j)) − f (xπ( j+1)))μ(Hj)

Another notable form of integral is the Sugeno integral Sugμ(f)

[13,24]. In this case

Sugμ( f ) =
n

Max
j=1

[ f (xπ( j)) ∧ μ(Hj)].

Another form of integral is the Shilkret integral, Shμ(f) [25]. In this

case

Shμ( f ) =
n

Max
j=1

[ f (x�( j)) · μ(Hj)]

We note that for any f and μ, Sugμ(f) ≥ Shμ(f).

Another related approach involves the use of the median

Medμ(f). In this approach we determine the element xπ (j) so that

μ(Hj) � 0.5 > μ(Hj) and then Medμ(f) = xπ (j). Actually we can ex-

press the median in a form similar to the Sugeno and Shilkret

integral. Let M be a function M: [0, 1] → [0, 1] so that M(a) = 0

for a < 0.5 and M(a) = 1 for a � 0.5. Using this we see that

Medμ(f) =
n

Max
j=1

[ f (xπ( j)) ∧ M(μ(Hj))]. We also can express it as

Medμ(f) =
n

Max
j=1

[ f (xπ( j))M(μ(Hj))]. Actually more generally we ex-

press it as
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