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a b s t r a c t

Generating a low-rank matrix approximation is very important in large-scale machine learning applica-
tions. The standard Nyström method is one of the state-of-the-art techniques to generate such an approx-
imation. It has got rapid developments since being applied to Gaussian process regression. Several
enhanced Nyström methods such as ensemble Nyström, modified Nyström and SS-Nyström have been
proposed. In addition, many sampling methods have been developed. In this paper, we review the
Nyström methods for large-scale machine learning. First, we introduce various Nyström methods.
Second, we review different sampling methods for the Nyström methods and summarize them from
the perspectives of both theoretical analysis and practical performance. Then, we list several typical
machine learning applications that utilize the Nyström methods. Finally, we make our conclusions after
discussing some open machine learning problems related to Nyström methods.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many large-scale machine learning problems involve generat-
ing a low-rank matrix approximation to reduce high time and
space complexities. For example, let n be the number of data
instances. The Gaussian process regression computes the inverse
of an n� n matrix which takes time Oðn3Þ and space Oðn2Þ. For
the large-scale problems, n can be in the order of tens of thousands
to millions, leading to difficulties in operating on, or even storing
the matrix.

Various methods [1–3] have been utilized to generate low-rank
matrix approximations. The standard Nyström method is one of
the state-of-the-art methods. It selects a subset of columns of the
original matrix to build an approximation. In general, the standard
Nyström method is used to approximate symmetric positive
semidefinite (SPSD) matrices, such as Gram or kernel matrices, or
their eigenvalues/eigenvectors. For approximating matrix K, it con-
sists of three steps. (1) Sampling step: it samples a subset of col-
umns of K to form matrix C; (2) Pseudo-inverse step: it performs
pseudo-inverse of the matrix W formed by the intersection
between those sampled columns and the corresponding rows; (3)
Multiplication step: it constructs a matrix by using the formulation
CWyC> to approximate the original matrix. For approximating
eigenvalues/eigenvectors, it also consists of three steps. (1)
Sampling step: it samples a subset of columns of K to form C; (2)

Singular value decomposition (SVD) step: it performs SVD of the
matrix W formed by the intersection between those sampled col-
umns and the corresponding rows to get singular values and singu-
lar vectors, respectively; (3) Extension step: it uses the Nyström
extension to get the approximate eigenvalues/eigenvectors of the
original matrix.

The standard Nyström method was first introduced into
Gaussian process regression for reducing the computational com-
plexity [4]. By replacing the original matrix with a Nyström
approximation and subsequently using the Woodbury formula,
the matrix inversion can be easily solved with time complexity
Oð‘2nÞ, where ‘ columns are sampled. After that, the standard
Nyström method has got rapid developments. Several enhanced
Nyström methods have been developed to provide more accurate
matrix approximation or eigenvector approximation, e.g., den-
sity-weighted Nyström (DW-Nyström), ensemble Nyström, modi-
fied Nyström and modified Nyström method by spectral shifting
(SS-Nyström). In addition, some techniques are developed to
improve the inner procedures of the Nyström approximation. For
the sampling step, various sampling methods [5–7] are utilized
for the Nyström methods. For the SVD step, recently an approxi-
mate SVD [8] that utilizes randomized SVD algorithms [9] was
proposed to accelerate the standard Nyström method for some
extreme large-scale machine learning applications.

One key aspect of the Nyström methods is the sampling step. It
influences the subsequent approximation accuracy and thus the
performance of the learning methods [10]. Initially, uniform sam-
pling is adopted when the standard Nyström method was applied
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[4], and it is also the most widely applied sampling method due to
its low time consumption. After that, various sampling methods
[6,11–15] that focus on selecting the most informative columns
are proposed. Thus, we call these sampling methods informative-
column sampling. We classify these methods into two classes:
(1) fixed sampling; (2) adaptive sampling. For fixed sampling, it
means the matrix is sampled with a fixed, non-uniform dis-
tribution over the columns. The distribution can be defined by a
function on the diagonal entities or the column entities of the
original matrix [6,11]. For adaptive sampling, it means the matrix
is sampled with adaptive techniques [12,13,16,17]. Different from
fixed sampling, the sampling distribution will be modified at each
iteration. Empirical results suggest that a tradeoff between effi-
ciency and accuracy exists for uniform sampling and informa-
tive-column sampling as the latter spends more time in finding a
concise subset of informative columns but can provide an
improved approximation accuracy. The tradeoff also exists for
fixed sampling and adaptive sampling. In real world applications,
the tradeoff should be considered carefully before utilizing differ-
ent sampling techniques.

The standard Nyström method has been applied to many
machine learning applications, e.g., manifold learning [18–20],
spectral clustering [21–24], kernel-based methods such as kernel
support vector machine (SVM) [25,13,26,27] and kernel ridge
regression [10,27], signal processing [28,29] and statistical learn-
ing [30,31]. Walkar et al. [18] proved that the standard Nyström
method combined with Isomap [32] is an efficient tool to extract
the low-dimensional manifold structure given millions of high-
dimensional face images, and the approximate Isomap tends to
perform better than Laplacian Eigenmaps [33] and is tied to the
original Isomap on both clustering and classification with the
labeled CMU-PIE [34] data set. In the work of Fowlkes et al. [22],
spectral clustering with the standard Nyström method outper-
forms the traditional Lanczos method [35] where the clustering
result is measured by normalized cut [36]. In the work of
Williams et al. [26], kernel-based Gaussian processes have been
accelerated using the Nyström approximation to the kernel matrix,
with the time complexity scaled down from Oðn3Þ to Oð‘2nÞ.

Nyström methods can be seen as a kind of information fusion
methods. They use the partial data many times to approximate
the values that we are interested, such as the eigenvalues/eigenvec-
tors of a matrix or the inverse of a matrix. When applied to machine
learning problems, Nyström methods will bring improvements in
efficiency on the premise of not reducing performance much.

The remainder of the paper is organized as follows. Section 2
introduces some preliminary knowledge. In Section 3, we intro-
duce the various Nyström methods. In Section 4, some related
low-rank matrix approximation methods are presented to differ-
entiate from the Nyström methods. In Section 5, several sampling
methods for the Nyström methods including uniform sampling and
informative-column sampling are listed, and we subsequently give
some comparisons between uniform sampling and informative-
column sampling from the perspectives of both theoretical analysis
and practical performance. In Section 6, we provide a summary of
typical large-scale machine learning applications of the Nyström
methods. We make our conclusions in Section 8 after discussing
several open machine learning problems related to Nyström meth-
ods in Section 7.

2. Preliminary knowledge

2.1. Notations

For an n� n SPSD matrix K ¼ ½Kij�, we define KðjÞ; j ¼ 1; . . . ;n,
as the jth column vector of K;KðiÞ; i ¼ 1; . . . ;n, as the ith row vector

of K. For a vector x 2 Rn, let xk kn; n ¼ 1;2;1, denote the 1-norm,
Euclidean norm, and 1-norm, respectively. Let Diag(K) denote
the vector consisting of the diagonal entries of the matrix K and
R denote the matrix containing the eigenvalues of K. Then,
Kk k2 ¼ DiagðRÞk k1 denotes the spectral norm of K; Kk kF ¼
DiagðRÞk k2 denotes the Frobenius norm of K; and Kk k� ¼
DiagðRÞk k1 denotes the trace norm (or nuclear norm) of K. Clearly,

Kk k2 6 Kk kF 6 Kk k� 6
ffiffiffi
n
p

Kk kF 6 n Kk k2: ð1Þ

2.2. Best rank-k approximation

Given a matrix with rank(K) = p, the SVD of K can be written as
K ¼ URV , where R is diagonal and contains the singular values
ðk1 P k2 P � � �P knÞ of K, and U and V have orthogonal columns
and contain the left and right singular vectors of K. Let Uk and Vk

be the first k ðk < pÞ columns of U and V, respectively, and Rk be
the k� k top sub-block of R. Then, the n� n matrix Kk ¼ UkRkVk

is the best rank-k approximation to K, when measured with respect
to any unitarily-invariant matrix norm, e.g., the spectral, Frobenius,
or trace norm [37]. We have

K � Kkk k2 ¼ kkþ1; ð2Þ

K � Kkk kF ¼
Xn

i¼kþ1

k2
i

 !1=2

; ð3Þ

K � Kkk k� ¼
Xn

i¼kþ1

ki: ð4Þ

2.3. Pseudo-inverse of a matrix

Another kind of useful Nyström related knowledge is the
pseudo-inverse (Moore–Penrose inverse). The pseudo-inverse of
an m� n matrix A can be expressed from the SVD of A as follows.
Let the SVD of A be

A ¼ U
S 0
0 0

� �
V>; ð5Þ

where U;V are both orthogonal matrices, and S is a diagonal matrix
containing the (non-zero) singular values of A on its diagonal. Then
the pseudo-inverse of A is an n�m matrix defined as

Ay ¼ V
S�1 0
0 0

 !
U>: ð6Þ

Note that Ay has the same dimension as the transpose of A. If A is
square, invertible, then its pseudo-inverse is the true inverse, that

is, Ay ¼ A�1.

2.4. Orthogonal projection

In linear algebra and functional analysis, a projection is a linear
transformation P from a vector space to itself such that P2 = P. A
projection is orthogonal if and only if it is self-adjoint. One way
to construct the projection operator on the range space of A is that

PA ¼ AðA>AÞyA> ¼ AAy ¼ HH> ¼ UU>; ð7Þ

where H represents the orthogonal basis on the range space of A and
U represents the left singular vectors of A corresponding to the non-
zero singular values. Given an n� ‘ matrix C, the projection of K

onto the column space of C is defined as PCK ¼ CCyK.
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