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a b s t r a c t

We first introduce Jeffrey’s rule of conditioning and explain how it allows us to determine the probability
of an event related to one variable from information about a collection of conditional probabilities of that
event conditioned on the state another variable. We note that in the original Jeffrey paradigm we have
the uncertainty about the state of the conditioning variable expressed as a probability distribution. Here
we extend this by allowing alternative formulations for the uncertainty about the conditioning variable.
We first consider the case where our uncertainty is expressed in terms of a measure. This allows us to
consider the case where our uncertainty is a possibility distribution. We next consider the case where
our uncertainty about the conditioning variable is expressed in terms of a Dempster–Shafer belief
structure. Finally we consider the case where we are ignorant about the underlying distribution and must
use the decision maker’s subjective attitude about the nature of uncertainty to provide the necessary
information to use in the Jeffrey rule.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Jeffrey rule of conditioning was introduced by Jeffrey [1–4]
and investigated by other researchers [5–13]. It provides a proce-
dure for determining the probability of an event A associated with
one variable, for example U, based upon a collection of conditional
probabilities of A conditioned upon the state of another variable V.
The conditioning states of V, Bj for j = 1 to q, form a partition of the
space associated with V. For example A may correspond to pres-
ence of a particular disease and the variable V corresponds the
results of a test and the conditionals are probability of having the
disease for particular test result. Jeffrey’s rule allows for some
uncertainty about the knowledge of state of the variable V. Thus
while we know the conditional probability of A given the state of
V we are not sure of V. More specifically in the original Jeffrey work
it is assumed that the knowledge about the state of V is carried by a
probability distribution over the partitioning sets, the Bj. Here we
provide an extension of the Jeffrey paradigm by considering that
the information about the state of V is carried uncertainty
formulations other then a probability distribution.

2. Jeffrey rule of conditional probabilities

Assume U is a variable taking its value in the space X and V is
another variable taking its value in the space Y. Assume A is a
subset of X whose probability is of interest to us. Let Bj, for j = 1

to q be a partition of the space Y, that is Bj \ Bk = £ andSq
j¼1Bj ¼ Y . Assume for j = 1 to q that P(AjBj) are the conditional

probabilities that U 2 A given V 2 Bj. If we know that V 2 Bj then
the PU(A) = P(AjBj). Jeffrey [1–4] provided a formula for determining
the probability that U 2 A, PU(A), in the case where we have some
uncertainty with respect to the value of V. This formula has come
to be known as Jeffrey’s Rule of conditioning which we introduce
in the following. If PV(Bj), for j = 1 to q, are a collection of probabil-
ities so that

P
jPV ðBjÞ ¼ 1 then Jeffrey suggested

PUðAÞ ¼
Xq

j¼1

PðAjBjÞPV ðBjÞ

Jeffrey’s original intention in introducing this rule was to
provide a procedure for updating of our knowledge of the
probability of A given the current information about the PV(Bj).
A typical example of the use of this rule is illustrated in the
following example.

Example. A manufacturer is deciding whether to expand his plant.
His decision hinges on whether the expansion will be profitable. In
the following we shall let A denote the event that the expansion
will be profitable. From past experience he knows that the
profitability of his expansion, A, depends on the future interest
rates. He can partition the situation with respect to interest rates
into three mutually exclusive sets, B1 = interest rates decrease,
B2 = interest rates remain the same and B3 = interest rates increase.
Furthermore he knows from his experience that
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PðAjB1Þ ¼ 0:8
PðAjB2Þ ¼ 0:5
PðAjB3Þ ¼ 0:3

Unfortunately his knowledge about the future interest rates is
uncertain. Based upon statements made by the members of the
Federal Reserve Board, which are somewhat conflicting, he
estimates the following probabilities

PV ðB1Þ ¼ 0:4
PV ðB2Þ ¼ 0:4
PV ðB3Þ ¼ 0:2

Using this information he applies Jeffrey’s rule to determine the
probability that the expansion will be profitable

PUðAÞ¼
X3

j¼1

PðAjBjÞPV ðBjÞ¼ ð0:8Þð0:4Þþð0:5Þð0:4Þþð0:3Þð0:2Þ¼0:58

Thus in this example the probability the expansion will be profit-
able is 0.58.

An interesting property of the Jeffrey’s rule is the following.
Assume Ai, i = 1 to r is a partition of X, that is Ai \ Aj = £ andSr

i¼1Ai ¼ X. Furthermore in this case we have then for each Ai and
Bj we have P(AijBj) where

Pr
i¼1pðAijBjÞ ¼ 1. Now from Jeffrey’s rule

we know for each Ai that

PUðAiÞ ¼
Xq

j¼1

pðAijBjÞPV ðBjÞ

From this we see that

Xr

i¼1

PUðAiÞ ¼
Xr

i¼1

Xq

j¼1

PðAijBjÞPV ðBjÞ
 !

¼
Xq

j¼1

PV ðBjÞ
Xr

i¼1

PðAijBjÞ
 !

¼
Xq

j¼1

PV ðBjÞ ¼ 1

Central to the use of the Jeffrey’s rule is the assumption that the
conditional probabilities, the P(AjBj), are fundamental objects of
human perception of probabilistic uncertainty . We note that this
is very much in the sprit of Bayesian modeling by in which
conditional probability are seen as fundamental to the human orga-
nization of knowledge, a position clearly stated by Pearl in [14].

Here we shall view the Jeffrey rule more generally as a kind of
weighted average, mean, of the conditional probabilities. Thus here
we view

PUðAÞ ¼
Xq

j¼1

wjPðAjBjÞ

were the wj are a set of weights having the properties that
wj 2 [0, 1] and

Pq
j¼1wj ¼ 1. In the case of the original Jeffrey rule,

wj = PV(Bj).
Given the properties of the weights we can observe some basic

features of the mean formula just introduced [15]

(1) Boundedness

Minj½PðAjBj� 6 PUðAÞ 6Maxj½PðAjBj�

(2) Monotonicity:
If P(AjBj] and eP(AjBj) are two sets of conditional probability so
that

PðAjBjÞP ePðAjBjÞ for j ¼ 1 to q

then PU(A) P ePU(A).

(3) Idempotency
If all P(AjBj) are the same, all P(AjBj) = p, then PU(A) = p.

Once taking this perspective that we can view the determina-
tion of PU(A) as a mean of the conditional probabilities, the P(AjBj)
weighted by the PV(Bj), we can look at other methods for this
implementing mean.

One alternative is to use the median value. Here if we let h be an
index function so that h(k) is the index of the kth largest of the
P(AjBj) then PUðAÞ ¼ PðAjBhðk�ÞÞ where k⁄ is such that

Xk�
k¼1

PV ðBhðkÞÞP 0:5 <
Xk��1

k¼1

PV ðBhðkÞÞ:

Here then we order the P(AjBj) in decreasing order of their associ-
ated PV(Bj) and then take PU(A) equal to the P(AjBj) where the
ordered sum of the PV(Bj) crosses 0.5.

Let us apply this at our earlier example involving profitability
and interest rates.

Example. Here we have P(AjB1) = 0.8, P(AjB2) = 0.5 and P(AjBj) = 0.3
and P(B1) = 0.4, PV(B2) = 0.4 and PV(B3) = 0.2. Here since the
ordering the of P(AjBj) is

PðAjB1Þ > PðAjB2Þ > PðAjB3Þ

we can use the following to calculate P(A)

P(AjBj) PV(Bj)
P

PV ðBjÞ

0.8 0.4 0.4
0.5 0.4 0.8 � Crossover
0.2 0.2 1.0

In this case we will have PU(A) = P(AjB2) = 0.5

3. Formulations of measure based uncertainty

In the preceding we have assumed that our knowledge about
the uncertainty associated with the Bj events is available in the
form of a probability distribution. In some cases our information
about the uncertainty associated with Bj may be available in some
other form. One very general framework for representing informa-
tion about uncertainty is a measure. Here we shall consider an
extension of the Jeffrey rule to the case of where our information
about the uncertainty associated with the Bj is expressed in the
form of a measure. We first review some ideas about measures
and their role in modeling uncertain information [16,17].

A fuzzy measure l on a space X is a mapping l: 2X?[0, 1] such
that

(1) l(£) = £

(2) l(X) = 1

(3) l(A) P l(B) if B # A

The third property is called monotonicity. In the following we
shall simply refer to l as a measure.

Assume l1 and l2 are two measures on the space X such that
l1(A) P l2(A) for every A. We shall denote this as l1 P l2 and
say that l1 is a more optimistic measure. We note that since
A # A [ B and B # A [ B then l(A [ B) P l(A) and l(A [ B) P l(A)
and hence l(A [ B) P Max[l(A), l(B). Similarly, since A \ B # A
and A \ B # B then l(A \ B) 6 l(A) and l(A \ B) 6 l(B) and hence
l(A \ B) 6Min[l(A), l(B)].

We shall say a measure l is superadditive if for all A \ B = £ we
have l(A [ B) P l(A) + l(B) and subadditive if l(A [ B) 6 l(A) + l(B)
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