

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 3863-3866

Tetrahedron Letters

Significant solvent effects and unusual additions of *p*-chloranil in the photoinduced electron-transfer reaction of 2,2-dianisyl-4-isopropylidene-3,3-dimethylcyclobutanone

Hiroshi Ikeda,* Futoshi Tanaka and Chizuko Kabuto

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

Received 4 March 2005; revised 24 March 2005; accepted 25 March 2005 Available online 13 April 2005

This paper is dedicated to Emeritus Professor T. Miyashi on the occasion of his retirement from Tohoku University

Abstract—A photoinduced electron-transfer reaction of 2,2-dianisyl-4-isopropylidene-3,3-dimethylcyclobutanone (1) in benzene gave two unexpected CA-adducts, 5,5-dianisyl-4,4-dimethyl-3-[1-(4-hydroxy-2,3,5,6-tetrachlorophenyl)methylethylidene]dihydrofu-ran-2-one (7) and 2,2-dianisyl-4-(4-hydroxy-2,3,5,6-tetrachlorophenoxy)-4-isopropenyl-3,3-dimethylcyclobutanone (8), while the reaction in acetonitrile did not, suggesting significant solvent effects on the product distribution. © 2005 Elsevier Ltd. All rights reserved.

Recently, we reported the first chemical capture of the radical cation variant of the oxatetramethyleneethane (3-methylenebutan-2-one-1,4-diyl radical cation, OTME⁺⁺, Chart 1) intermediate.¹ Photoinduced electron-transfer (PET) reactions of 2,2-dianisyl-4-isopropylidene-3,3-dimethylcyclobutanone [1, anodic peak potential

 $(E_{ap}^{ox}) = +1.43$ V versus SCE, in acetonitrile] using *p*-chloranil (CA, $E_{1/2}^{red} = \pm 0.00$ V) or 1,2,9,10-tetracyanoanthracene (TCA, -0.43 V)² generated an OTME⁺type intermediate **2**⁺, which was captured by water³ or molecular oxygen⁵ in acetonitrile to give 2,2-dianisyl-4isopropylidene-5,5-dimethyldihydrofuran-3-one (**3**) and

Chart 1. The parent OTME^{$\cdot+$}, 2-methylenecyclobutanone derivatives and sensitisers. An = 4-MeOC₆H₄.

Scheme 1. Solvent- and sensitiser-dependent PET reactions of 1.

Keywords: Photochemistry; Electron transfer; Methylenecyclobutanone; Radical cation; Addition reaction; Solvent effects; Oxatetramethyleneethane. * Corresponding author. Tel.: +81 22 795 6554; fax: +81 22 795 6557; e-mail: ikeda@org.chem.tohoku.ac.jp

^{0040-4039/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.03.196

4,4'-dimethoxybenzophenone (4, Scheme 1).¹ Interestingly, similar PET reactions of the 2-methylenecyclobutanone derivatives, 5 and 6, strongly depend on the solvents and sensitisers.^{7–9} A CA-sensitised PET rearrangement from 5 to 6 via the corresponding OTME⁺⁺-type intermediate took place efficiently in nonpolar benzene, but not in polar acetonitrile, while similar TCA-sensitised photoreactions in both solvents resulted in the formation of a complex mixture. To gain further insight into the reactivity of 1⁺⁺, we studied solvent effects on the CA- or TCA-sensitised PET reactions of 1. Here, we briefly report on the significant solvent and sensitiser effects on the product distribution and the occurrence of unexpected CA addition reactions.¹⁰

PET reactions of 1 were carried out with a 2 kW Xe lamp ($\lambda > 440$ nm). Methylenecyclobutanone 1 was not consumed on irradiation of TCA for 60 min at 20 °C in degassed dry benzene with or without water or molecular oxygen. Similar irradiation of CA for 30 min in degassed dry acetonitrile resulted in the sole consumption of 1 (30%, Table 1).¹ Conversely, a similar reaction in degassed dry benzene for 60 min gave two unexpected CA-adducts, 5,5-dianisyl-4,4-dimethyl-3-[1-(4-hydroxy-2,3,5,6-tetrachlorophenyl)methylethylideneldihydrofuran-2-one (7, Scheme 1) and 2,2-dianisyl-4-(4-hydroxy-2,3, 5,6-tetrachlorophenoxy)-4-isopropenyl-3,3-dimethylcyclobutanone (8) in 27% and 16% yields, respectively, at 49% conversion.¹³ A small amount of 7 was detected under PET conditions in dry dichloromethane. The structure of 7 was determined in X-ray crystallographic analyses, and is shown in Figure 1.¹⁴ The structure of $\mathbf{8}$ was confirmed by spectroscopic analyses,¹³ especially ¹H NMR analyses involving heteronuclear single quantum correlation and heteronuclear multi-bond connectivity methods. On similar irradiation for 30 min in degassed aqueous [2% (v/v)] acetonitrile, 3 was formed quantitatively. By contrast, the reaction in degassed aqueous $[0.062\% (v/v)^{12}]$ benzene for 30 min gave not only 3 but also 7 and 8 in 6%, 23% and 8% yields, respectively, at 60% conversion. In degassed aqueous $[0.151\% (v/v)^{12}]$ dichloromethane, 3 was formed in 29% yields at 35% conversion with a trace amount of 7. On irradiation for 20 min under an oxygen atmosphere in dry acetoni-

Figure 1. The ORTEP drawing of 7 with an acetone molecule. Hydrogen atoms are omitted for clarity.

trile, 4 was solely formed in 59% yields, at 62% conversion.¹ On the other hand, on irradiation for 60 min under an oxygen atmosphere in dry benzene 4, 7 and 8 were formed in 3%, 15% and 4% yields, respectively, at 34% conversion. In dry dichloromethane under an oxygen atmosphere, **4** was formed in 37% yield at 55% conversion with a trace amount of 7. The products are classified into two categories: one consists of 3 and 4, which favour a polar solvent; and the other pairs 7 and 8, which prefer a nonpolar solvent. The ratio of yields of 3 or 4 to those of 7 and 8 strongly depends on the solvent. In a series of degassed aqueous solvents, the ratio of 100:0 in acetonitrile changes to >95:<5 in dichloromethane and 16:84 in benzene. Similarly, in a series of dry solvents under an oxygen atmosphere, the ratio of 100:0 in acetonitrile changes to >95:<5 in dichloromethane, and 14:86 in benzene.

Scheme 2 shows a plausible reaction mechanism for the CA-sensitised PET reactions of 1 in benzene.¹⁵ Irradiation of CA with 1 gives a contact radical ion pair consisting of 1^{+} and CA^{-} ($[1^{+}/CA^{-}]_{crip}$) or an exciplex of $1^{\delta+}$ and $CA^{\delta-}$ ($[1^{\delta+}/CA^{\delta-}]_{ex}$). A quite small portion of 1^{+} (or $1^{\delta+}$) converts into 2^{+} by C-2–C-3 bond cleavage to give 3 and 4 via a similar pathway in acetonitrile.¹ Most of 1^{+} (or $1^{\delta+}$) and CA^{-} (or $CA^{\delta-}$) react within a contact radical ion pair (or an exciplex) to give 7 and 8. The C-1–C-2 bond dissociative nucleophilic addition¹⁶

Atmosphere	Solvents	H ₂ O % (v/v)	Time (min)	Conv. ^b	Yields ^b				Product ratios (3 or 4):(7 + 8)
					3	4	7	8	
Degassed	Acetonitrile ^c	0	30	30	_	_	0	0	
	Dichloromethane	0	30	15			4	0	
	Benzene	0	60	49	—	—	27	16	
Degassed	Acetonitrile	2	30	56	56		0	0	100:0
	Dichloromethane	0.151 ^d	30	35	29		<2	0	>95:<5
	Benzene	0.062 ^d	30	60	6	—	23	8	16:84
Oxygen	Acetonitrile ^c	0	20	62		59	0	0	100:0
	Dichloromethane	0	40	55		37	<2	0	>95:<5
	Benzene	0	60	34		3	15	4	14:86

Table 1. Solvent effects on the product distribution in the CA-sensitised PET reactions of 1 at $20 \,^{\circ}\text{C}^a$

a[1] = [CA] = 0.01 M.

^b The conversions and yields were determined by ¹H NMR analysis and are given in %.

^c See Ref. 1.

^d The concentration of water in dichloromethane and benzene saturated with water was 0.151 and 0.062% (v/v), respectively. See Ref. 12.

Download English Version:

https://daneshyari.com/en/article/5280678

Download Persian Version:

https://daneshyari.com/article/5280678

Daneshyari.com