

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 3917-3921

Tetrahedron Letters

Spectroscopic and DFT evidence for a nonclassical radical cation derived from 7-benzhydrylidenenorbornene

Hiroshi Ikeda,^{a,*} Hayato Namai^a and Takashi Hirano^b

^aDepartment of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan ^bDepartment of Applied Physics and Chemistry, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan

> Received 16 February 2005; revised 14 March 2005; accepted 18 March 2005 Available online 11 April 2005

Abstract—Nanosecond time-resolved UV/vis absorption spectroscopy on laser flash photolysis was conducted for photoinduced electron-transfer reactions of 7-benzhydrylidenenorbornene (1) and 7-benzhydrylidenenorbornane (5). The differences in the observed absorption bands and the structures of $1^{\cdot+}$ and $5^{\cdot+}$ were evaluated successfully using calculations based on (time dependent) density functional theory, confirming the nonclassical nature of $1^{\cdot+}$. © 2005 Elsevier Ltd. All rights reserved.

Previously, Hirano, Ohashi and co-workers reported^{1,2} the π -facial selective nucleophilic addition to the radical cation of 7-benzhydrylidenenorbornene (1, Scheme 1, anodic peak potential = +1.50 V vs SCE in acetonitrile), triggered by a photoinduced electron-transfer (PET) reaction using a sensitizer. The π -facial selectivity was explained by the possible generation of a nonclassical radical cation (1^{.+}) involved with electronic coupling of exocyclic (C-7–C-8) and endocyclic (C-2–C-3) double

bonds. It was suspected that nucleophilic attack of a methanol or water molecule to 1^{++} preferentially occurs from the *anti* side of the endocyclic double bond. Unfortunately, however, 1^{++} was not observed directly. If 1^{++} are observed using UV/vis absorption spectroscopy, it will be of value, because such electronic coupling was recognized as a homoconjugation and has been suggested to play a crucial role in electron-transfer reactions of 7-methylen-enorbornadiene (3)³ and 7-methylenequadricyclane (4),³

Scheme 1. Top: possible generation of a nonclassical radical cation (1.⁺) in the PET π -facial selective nucleophilic addition reaction of 1. Bottom: a list of related compounds (3–5 and 6[#]).

Keywords: Photochemistry; Nonclassical radical cation; π-Facial selectivity; Absorption spectra; Electronic coupling.

^{*} Corresponding author. Fax: +81 22 795 6557; e-mail: ikeda@org.chem.tohoku.ac.jp

^{0040-4039/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.03.156

and has only been detected by CIDNP.⁴ Therefore, we studied nanosecond time-resolved UV/vis absorption spectroscopy on laser flash photolysis (LFP) of 1 and structurally related 7-benzhydrylidenenorbornane² (5, Scheme 1). Here, we report the direct observation of a nonclassical radical cation 1^{++} together with the results of density functional theory (DFT) and time-dependent (TD) DFT calculations.

Nanosecond time-resolved UV/vis absorption spectroscopy on LFP⁵ was performed with N-methylquinolinium tetrafluoroborate $(NMQ^+BF_4^-)$ and toluene as a sensitizer and a cosensitizer,⁶ respectively, in aerated acetonitrile at 298 K. As shown in Figure 1a and b, laser excitation (355 nm) of $NMQ^+BF_4^-$ with 1 in aerated acetonitrile gave an intense sharp absorption band with λ_{ab} at 391 nm (band A), a broad weak absorption band at 480–580 nm (band B), and a broad intense absorption band at 600–850 nm (band C).⁷ The differential optical densities (Δ OD) observed at 391, 560, and 750 nm decreased synchronously with almost the same rate constant, $k_d \sim 7 \times 10^5 \text{ s}^{-1}$, indicating that these bands originate in the same species, 1⁺⁺. Similarly, 5⁺⁺ had three bands: a sharp intense absorption band with λ_{ab} at 386 nm (band A'), a broad weak absorption band at 500-650 nm (band B'), and a broad intense absorption band at >700 nm (band C') (Fig. 1c and d).⁷ Interestingly, the λ_{ab} (391 nm) of band A of 1⁺⁺ was redshifted slightly, compared with that (386 nm) of band A' of 5⁺⁺, while a large blueshift was observed for the λ_{ab} (600–850 nm) of band C of 1^{++} as compared to that (>700 nm) of band C' of **5**⁺.

To gain insight into the electronic structure of 1^{+} , we performed DFT calculations⁸ for 1, 1^{+} , 5, and 5⁺. As shown in Figure 2a, the subunit of the exocyclic double bond in the neutral 1 bends slightly toward the C-5–

Figure 2. Side views of 1 (a), 1^{+} (b), $1^{2^{+}}$ (c), 5 (d), 5^{+} (e), $5^{2^{+}}$ (f), 6^{-} (g), 6' (h), and 6^{+} (i) optimized using the (U)B3LYP/(aug-)cc-pVDZ calculations.

C-6 methylene side at the B3LYP/cc-pVDZ level. Conversely, 1^+ is calculated to bent in the opposite manner, as shown in Figure 2b. The C-1–C-7–C-4 skeleton and the exocyclic double bond of 1^+ bend to the side of the endocyclic double bond by 5.2° [=(360.0° – 115.0°)/ $2 - 117.3^\circ$] and 5.0° (=180.0° – 175.0°), respectively, at the UB3LYP/cc-pVDZ level. Note that the calculation suggests a symmetrical structure for **5** and **5**⁺, the structurally related species without an endocyclic double bond (Fig. 2d and e).

Figure 1. Nanosecond time-resolved UV/vis absorption spectra observed in the LFP of **1** (a and b, 1 mM) and **5** (c and d, 1 mM) under NMQ⁺BF₄⁻ (10 mM)-toluene (1 M)-sensitized conditions in aerated acetonitrile. Spectra (i) 100 ns, (ii) 400 ns, (iii) 1 μ s, (iv) 2 μ s, and (v) 5 μ s.

Download English Version:

https://daneshyari.com/en/article/5280690

Download Persian Version:

https://daneshyari.com/article/5280690

Daneshyari.com