
Architecture for management and fusion of context information

José M. Fernández-de-Alba ⇑, Rubén Fuentes-Fernández, Juan Pavón
Dept. Software Engineering and Artificial Intelligence, Universidad Complutense de Madrid, Madrid, Spain

a r t i c l e i n f o

Article history:
Available online 13 November 2013

Keywords:
Context-awareness
Context-aware framework
Distributed blackboard model
Context aggregation
Context propagation

a b s t r a c t

Information in a context-aware system has diverse natures. Raw data coming from sensors are
aggregated and filtered to create more abstract information, which can be processed by context-aware
application components to decide what actions should be performed. This process involves several activ-
ities: finding the available sources of information and their types, gathering the data from these sources,
facilitating the fusion (aggregation and interpretation) of the different pieces of data, and updating the
representation of the context to be used by applications. The reverse path also appears in context-aware
systems, from changes in the context representation to trigger actions in certain actuators. FAERIE
(Framework for AmI: Extensible Resources for Intelligent Environments) is a framework that facilitates
management and fusion of context information at different levels. It is implemented as a distributed
blackboard model. Each node of the system has a private blackboard to manage pieces of information that
can be accessed by observer components, either locally or remotely (from other nodes) in a transparent
way. The use of the framework is illustrated with a case study of an application for guiding people to
meetings in a university building.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Last years have seen the proliferation of technologies for recog-
nizing location, identity, movement, orientation, face and speech in
a variety of devices. Especially relevant has been their integration
in mobile devices, such as notebooks, tablets, and smart phones,
and within facilities, for instance surveillance cameras and
presence sensors in buildings. The combination of these resources
gives rise to environments with numerous data information
sources that can be dynamically assembled to solve high-level
tasks.

Ambient Intelligence (AmI) [1] aims to integrate these technol-
ogies and devices to build smart environments. These environments
combine information from sensors to infer the activities that are
taking place at each moment, use that knowledge to anticipate
users’ needs, and build appropriate responses. In addition, smart
environments are flexible enough to integrate new devices of dif-
ferent types and tolerate their potential failures without a notice-
able configuration effort by users. This ability of systems to adapt
themselves to the acquired context (both their own and that of
users) is known as context-awareness. The context refers to any
information related to people, places or objects that is relevant
for the operation of applications [2]. It includes, for instance, pref-
erences, current tasks, location and time, or available resources.

According to previous definition, it is essential for a
context-aware system to facilitate integration of different kinds of
information fusion processes. Information fusion is the merging
of information from heterogeneous sources with different repre-
sentations in order to obtain a more convenient or synthesized ver-
sion of the information [3]. To develop this integration there exist
numerous alternatives [4]. Among them, some are focused on the
sources being combined [5], and other are focused on the data
[6]. Each alternative has a certain impact on the adopting
architecture.

Most architectural approaches to build context-aware systems
use multilayered architectures [4,7,8]. These architectures facili-
tate the conceptualization and modularization of abstraction lev-
els, but constrain the ability of components to work across
multiple layers. They usually require complex management mech-
anisms for components, information and processes. Looking to
overcome these limitations, researchers are considering alternative
architectures with mechanisms that bring more flexibility and
robustness. This is the case of works based on blackboard models
[5]. However, this kind of models also presents some undesirable
restrictions, for instance, the centralization in the management of
context information.

FAERIE (Framework for AmI: Extensible Resources for Intelligent
Environments) tries to overcome this issue by providing a distrib-
uted solution that implements a federated blackboard model. This
model provides the view of a unique virtual blackboard for all
components, hiding the details of the actual distribution of the sys-
tem. This structure addresses several issues in earlier applications

1566-2535/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.inffus.2013.10.007

⇑ Corresponding author.
E-mail addresses: jmfernandezdealba@fdi.ucm.es (J.M. Fernández-de-Alba),

ruben@fdi.ucm.es (R. Fuentes-Fernández), jpavon@fdi.ucm.es (J. Pavón).

Information Fusion 21 (2015) 100–113

Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier .com/locate / inf fus

http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2013.10.007&domain=pdf
http://dx.doi.org/10.1016/j.inffus.2013.10.007
mailto:jmfernandezdealba@fdi.ucm.es
mailto:ruben@fdi.ucm.es
mailto:jpavon@fdi.ucm.es
http://dx.doi.org/10.1016/j.inffus.2013.10.007
http://www.sciencedirect.com/science/journal/15662535
http://www.elsevier.com/locate/inffus


of blackboards to manage context, such as the dependency on a
central server and the considerable network traffic generated. Be-
sides, it provides to context-aware components a flexible access
to information at any level of abstraction. It uses a subscription
mechanism that is independent of the logical organization of sys-
tems in layers. With it, components can interpret and combine
any intended information, either to increase or decrease its
abstraction level. This mechanism facilitates the implementation
within the components of the mentioned information fusion pro-
cedures. Moreover, since this architecture provides transparency
for most of the issues related to distributed context management,
it allows engineers to focus on the development of business logic,
and reduces the errors not related directly with it. This will be
illustrated with the case study of an application for guiding people
in a building for a meeting.

The rest of the paper is organized as follows. Next two sections
describe the FAERIE framework, with Section 2 presenting the
architecture and Section 3 illustrating its use through the imple-
mentation of the case study. Section 4 provides a review of other
context-aware architectures and compares them with our work. Fi-
nally, Section 5 draws some conclusions and issues on the evolu-
tion of the FAERIE framework.

2. The FAERIE framework

FAERIE conceives a context-aware system S as a set of intercon-
nected environments e1; . . . ; en. Each environment ei comprehends:

� A physical space pi, which contains a single main device di0 and a
set of peripheral devices di1; . . . ; dim physically connected to di0.
These devices include the sensors and actuators deployed in
the space, as well as other elements that may provide additional
services (e.g. a database connection). The type P is defined as
the set of all possible combinations of states of devices in a
physical space. The location and coverage of pi are determined
by the location, type, and range of the devices with sensing or
acting capabilities in it, and it may change over time. This
way, many physical spaces from different environments may
overlap.
� A computational space ci (also called node in a computer

network), which is represented by the software framework run-
ning on di0. It contains the components implementing the logics
of AmI applications. Concretely, it contains one context container
ji holding the context model, and a set of context observers
oi1; . . . ; oip that manipulate that model. The type K is defined
as the set of all possible combinations of context elements in
a context container.
� A set of known environments ei1; . . . ; eiq such that each node

ci1; . . . ; ciq share a network with ci.

Fig. 1 represents this structure. An example of connection
among nodes is modeled in Fig. 2. It shows three main devices: a

smartphone, a desktop computer, and a laptop. There are several
peripheral devices (e.g., sensors and actuators), applications and
files. Each main device runs its node, which contains its respective
context container and context observers. Some of the context
observers drive the peripheral devices.

A context container acts as a blackboard, and the context
observers examine or update its information according to certain
logic. When there is a change in the representation of the context,
a notification is sent to the interested (i.e., subscribed) context
observers, which are able to modify their behavior accordingly.
This, in turn, may modify the current context or the behavior of
the driven devices. Thus, the context observers are responsible of
making the state of the context progress over time.

In a formal way, a general context observer oj acts as a function
of the form oj : K � P ! K � P. This means, given a state of the
physical environment and the context container, the observer
generates a new state of the context container and changes the
physical environment. Assuming a discrete division of the time,

Fig. 1. Structure of a FAERIE-based context-aware system.

Table 1
Comparison table.

Systems/Frameworks Context acquisition Context modeling Context processing Distribution/Layers

iRoom [5] Blackboard Key-value tuples Data-centric Central server/dynamic
Context toolkit [6] Widgets Key-value tuples Process-centric p2p/Static
Context Management Framework [17] Blackboard Ontology-based Data-centric Central server/dynamic
Hydrogen [18] Context server/point-to-point Object-oriented Process-centric Central server/static
Haya’s [19] Blackboard/context graph Key-value tuples Data-centric Central server/dynamic
OCP [20] Virtual blackboard Ontology-based Rule-based p2p/Static
Henricksen’s [21] Context server Ontology-based Process-centric p2p/Static
Ejigu’s [22] Context server Ontology-based Process-centric p2p/Static
Hermes [23] Context server Object-oriented Process-centric p2p/Dynamic
Venturini’s [24] Context broker Ontology-based Process-centric p2p/Dynamic
FAERIE Blackboard Object-oriented Data-centric p2p/Dynamic

J.M. Fernández-de-Alba et al. / Information Fusion 21 (2015) 100–113 101



Download English Version:

https://daneshyari.com/en/article/528109

Download Persian Version:

https://daneshyari.com/article/528109

Daneshyari.com

https://daneshyari.com/en/article/528109
https://daneshyari.com/article/528109
https://daneshyari.com

