ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Gold(I)-catalyzed one-pot reaction between 2-alkynylanilines and alkynols leading to the formation of C-3-substituted indoles: a case of formal carboamination of alkynes

Nitin T. Patil*, Vipender Singh, Ashok Konala, Anil Kumar Mutyala

Organic Chemistry Division-II, Indian Institute of Chemical Technology, Hyderabad 500 607, India

ARTICLE INFO

Article history: Received 19 December 2009 Revised 5 January 2010 Accepted 10 January 2010 Available online 15 January 2010

Keywords: Alkynes Gold catalyst Hydroamination Hydroalkoxylation Hydroarylation

ABSTRACT

A process involving gold(I)-catalyzed formal carboamination of alkynes for the synthesis of C-3-substituted indoles has been developed. The procedure utilizes easily accessible starting materials such as 2-alkynylanilines and alkynols. A series of C-3-functionalized indoles are accessible by using this one-pot strategy. Mechanistically, the reaction involves three catalytic cycles and each of them is essentially catalyzed by a single metal catalyst, that is, Ph₃PAuOTf.

© 2010 Published by Elsevier Ltd.

1. Introduction

Substituted indoles have attracted great attention due to their widespread occurrence in nature as well as their remarkable biological activities.¹ Their synthesis has been the objective of research for over a century, and a variety of well-established classical methods are now available in the literature.² Among a variety of methods, transition metal-catalyzed reactions are the most attractive, since those reactions can directly construct multiply-substituted indole from readily accessible starting materials under mild conditions.³ One of the straightforward ways to access indoles is the metal-mediated intramolecular hydroamination of 2-alkynylanilines (Scheme 1, path I).⁴ Another powerful method for their synthesis involves the metal-mediated intramolecular carboamination of *N*-protected 2-alkynylanilines (Scheme 1, path II).⁵

Recently, we⁶ and others⁷ reported a new approach for the synthesis of C-3-functionalized indoles, by metal-catalyzed reactions between alkynols and indoles. Metal-catalyzed reactions of 2-alkynylanilines 1 with electrophiles such as α,β -enones^{4g} and ethyl propiolate⁸ have been known to give C-3-functionalized indoles (Scheme 2, path I). Against this background, we questioned whether it might be possible to use 2-alkynylanilines, instead of indoles, for the metal-catalyzed cascade process as shown in Scheme 2 (path II). More specifically, we hypothesized that a single

Scheme 1.

metal catalyst having acidic property9 should promote three reac-

tions such as hydroalkoxylation, hydroamination, and hydroarylation with the formation of C-O, C-N, and C-C bonds in one-pot

without isolating any intermediates.¹⁰ A successful reaction as

envisioned above would provide access to C-3-substituted indoles

starting from 2-ethynylanilines and alkynols. Herein, we report

successful realization of the reaction by utilizing 5 mol % Ph₃PAu-

OTf, generated in situ by mixing Au(PPh3)Cl and AgOTf (5 mol %

each), as a catalyst. The method shows very broad substrate scope

towards alkynols and 2-alkynylanilines. Since overall formation of

C-C and C-N bonds across alkynes take place, we termed this pro-

Initially, 4-pentyn-1-ol 1a was treated with 2-aminophenyl al-

cess as formal carboamination of alkynes. 11

kyne **2a** in the presence of 5 mol % AgOTf in DCE at 60 °C for 12 h (Table 1, entry 1). Pleasingly, this led to the formation of C-3-less R^2 R^2

^{*} Corresponding author. Tel.: +91 40 27191471; fax: +91 40 27193382. E-mail addresses: nitin@iict.res.in, patilnitint@yahoo.com (N.T. Patil).

Scheme 2.

substituted indole 3a in 52% yield. Under the same conditions, $Cu(OTf)_2$ catalyst gave 3a in 30% yield (entry 2). The use of platinum salts such as $PtCl_2$ and $PtCl_4$ afforded 3a in 70 and 65% yield, respectively (entries 3 and 4). When $Au(PPh_3)Cl$ and AuCl alone were employed as catalyst, the desired product was obtained in 45 and 75% yield, respectively (entries 5 and 6). The catalyst PPh_3AuOTf generated from mixing equimolar amount of $Au(PPh_3)Cl$ and AgOTf gave a slightly higher yield (entry 7). A combination of $Au(PPh_3)Cl$ with other silver salts such as $AgBF_4$ (entry 8) and $AgSbF_6$ (entry 9) was examined; however, both of them gave inferior results. The result of the study indicates that Ph_3PAuCl in combination with AgOTf is the catalyst of choice for this transformation (entry 7).

Under the optimal conditions, 12 we studied the scope of the reaction. As shown in Table 2, alkynylanilines were varied keeping 4-pentyn-1-ol 1a as a model substrate. It is evident that a wide range of substituted 2-alkynylanilines 2b-k reacted well to furnish 3b-k in moderate to high yields (60–81%) regardless of the electronic nature of the aromatic ring. Particularly noteworthy is the fact that electron-withdrawing substituents on the aromatic rings were not detrimental to the reactivity as $-NO_2$, -CN-COOMe, and $-CF_3$ groups were all well tolerated (entries 1, 4, 5, 8, and 9). The reaction was also successful for halo-substituted amino-alkynes (entries 2, 6, and 7). It should be noted that this method is applicable to only terminal amino-alkynes and therefore internal alkynes cannot be employed as substrates.

Table 1Optimization studies^a

Entry	Catalyst ^a	Yield ^b (%)
1	AgOTf	52
2	$Cu(OTf)_2$	30
3	PtCl ₂	70
4	PtCl ₄	65
5	Ph₃PAuCl	45
6	AuCl	75
7	Ph₃PAuCl + AgOTf	81
8	Ph ₃ PAuCl + AgBF ₄	58
9	Ph ₃ PAuCl + AgSbF ₆	60

^a Reaction conditions: 0.59 mmol 2a, 1.1 equiv 1a, 5 mol % catalyst, DCE (0.3 M), 60 °C, 12 h.

Table 2 Scope with 2-alkynylanilines^a

Entry	2	3	Time (h)	Yield ^b (%)
1	O ₂ N 2b NH ₂	3b	18	60
2	CI 2c	3с	12	72
3	H ₃ C 2d	3d	12	75
4	NC 2e	3e	18	70
5	MeOOC 2f	3f	15	68
6	Cl NH ₂ 2g	3g	12	71
7	P 2h NH ₂	3h	12	81
8	F ₃ C 2i NH ₂	3i	12	70
9	O ₂ N 2j	3j	18	69
10	NC 2k	3k	12	73

^a Reaction conditions: 0.59 mmol **2**, 1.1 equiv **1a**, Ph_3PAuCl and AgOTf (5 mol % each with respect to **2**), DCE (0.3 M), 60 °C.

Next, the scope of the reaction with various alkynols was studied by using **2a** as a model substrate (Table 3). The alkynols bearing sterically demanding substituents in the tether such as **1b**, **1c**, and **1d** reacted well giving corresponding products **3l**, **3m**, and **3n** in high yields (entries 1–3). As can be judged from the entry **4**, 5-hexyn-1-ol **1e** can also be used as a substrate. Even internal alkynes such as **1f-i** were tolerated giving the corresponding products **3p-s** in good yields (entries 5–8). It should be noted that in the latter case only one regioisomer **3s** was formed indicating that the **1i** cyclized in 5-*exo-dig* fashion (entry 8).

A plausible mechanism for the gold-catalyzed formal carboamination of alkynes is described in Figure 1. A first step would be the complexation of Au(I) catalysts to the alkyne function in ${\bf 1a}$ which lead to intermediate ${\bf 4}$ (Fig. 1, cycle ${\bf A}$). The cyclization step may then occur directly by the attack of proximal hydroxyl group lead-

b Isolated yields based on 2a.

b Isolated yields based on 2.

Download English Version:

https://daneshyari.com/en/article/5281243

Download Persian Version:

https://daneshyari.com/article/5281243

Daneshyari.com