
Composite distance based approach to von Mises mixture reduction

Mario Bukal ⇑, Ivan Marković, Ivan Petrović
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a b s t r a c t

This paper presents a systematic approach for component number reduction in mixtures of exponential
families, putting a special emphasis on the von Mises mixtures. We propose to formulate the problem as
an optimization problem utilizing a new class of computationally tractable composite distance measures
as cost functions, namely the composite Rényi a-divergences, which include the composite Kullback–
Leibler distance as a special case. Furthermore, we prove that the composite divergence bounds from
above the corresponding intractable Rényi a-divergence between a pair of mixtures. As a solution to
the optimization problem we synthesize that two existing suboptimal solution strategies, the generalized
k-means and a pairwise merging approach, are actually minimization methods for the composite distance
measures. Moreover, in the present paper the existing joining algorithm is also extended for comparison
purposes. The algorithms are implemented and their reduction results are compared and discussed on
two examples of von Mises mixtures: a synthetic mixture and a real-world mixture used in people
trajectory shape analysis.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Many statistical and engineering problems [1–3] require mod-
eling of complex multi-modal data, wherein mixture distributions
became an inevitable tool. In this paper we draw attention to finite
mixtures of a specific distribution on the unit circle, the von Mises
distribution. Starting from 1918 and the seminal work of von Mises
[4], where he investigated hypothesis on integrality of atomic
weights of chemical elements, the proposed parametric density
plays a pertinent role in directional statistics with wide range of
applications in physics, biology, image analysis, neural science
and medicine – confer monograms [5–7] and references therein.

Estimation of complex data by mixture distributions may lead
to models with large or, in applications like target tracking, ever
increasing number of components. In lack of efficient reduction
procedures, such models become computationally intractable and
lose their feasibility. Therefore, component number reduction in
mixture models is an essential tool in many domains like image
and multimedia indexing [8,9], speech segmentation [10], and it
is an indispensable part of any tracking system with mixtures of
Gaussian [11–13] or von Mises distributions [3]. The subject mat-
ter is particularly relevant to the information fusion domain since
it relates to the following challenging problems in multisensor data

fusion [14]: data dimensionality, processing framework, and data
association. These problems are related to component reduction
by the fact that measurement data as quantity of interest can be
preprocessed (compressed) prior to communicating it to other
nodes (in a decentralized framework) or the fusion center, thus
effectively saving on the communication bandwidth and power re-
quired for transmitting data. For example, consider the problem of
people trajectory analysis with von Mises mixtures [2] in a distrib-
uted sensor networks where the mixtures might need to be
communicated between the sensor nodes. Motivated by [2,3], in
this paper we study methods and respective algorithms for compo-
nent number reduction in mixtures of von Mises distributions, but
due to the general exposition of the subject in the framework of
exponential family mixtures, the methods and findings easily
extend to other examples like mixtures of Gaussian distributions,
and von Mises-Fisher distributions [5].

Existing literature on mixture reduction schemes is mostly re-
lated to Gaussian mixture models. A reduction scheme for Gauss-
ian mixtures in the context of Bayesian tracking systems in a
cluttered environment, which successively merges the closest pair
of components and henceforth referred to as the joining algorithm,
was proposed in [11]. The main drawback of the scheme is its local
character, which gives no information about the global deviation of
the reduced mixture from the original one. In [15] the mixture
reduction was formulated as an optimization problem for the inte-
gral square difference cost function. A better suited distance mea-
sure between probability distributions is the Kullback–Leibler (KL)
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distance [16], but it lacks a closed form formula between mixtures,
what makes it computationally inconvenient. Several concepts
have been employed to circumvent this problem. A new distance
measure between mixture distributions, based on the KL distance,
which can be expressed analytically was derived in [17], and uti-
lized to solve the mixture reduction problem. In [12] an upper
bound for the KL distance was obtained and used as dissimilarity
measure in a successive pairwise reduction of Gaussian mixtures
– henceforth we refer to it as the pairwise merging algorithm. Unlike
the joining algorithm, this procedure gives a control of the global
deviation of the reduced mixture from the original one. Introduc-
ing the notion of Bregman information, the authors in [18] general-
ized the previously developed Gaussian mixture reduction
concepts to arbitrary exponential family mixtures. Further devel-
opment of these techniques for exponential family mixtures can
be found in [19–24]. Finally, we mention the variational Bayesian
approach [25,26] as well as [27] as alternative concepts of mixture
reduction developed for Gaussian mixtures.

Contributions of the present paper are as follows. Firstly, we
formulate the problem of component number reduction in expo-
nential family mixtures as an optimization problem utilizing a
new class of composite distance measures as cost functions. These
distance measures are constructed employing Rényi a-divergences
as ground distances, and it is shown that the composite distance
bounds the corresponding Rényi a-divergence from above (see
Lemma 1 below). This inequality is very important since it provides
an information on the global deviation of the reduced mixture from
the original one measured by the Rényi a-divergence. Secondly, we
synthesize previously developed reduction techniques [12,18,24]
in the sense that they can all be interpreted as suboptimal solution
strategies to the proposed optimization problem. For the purpose
of computational complexity and accuracy comparisons, the join-
ing algorithm is extended using the scaled symmetrized KL dis-
tance as a dissimilarity measure between mixture components.
Thirdly, special attention is given to von Mises mixtures for which
we present analytical expressions for solving the component num-
ber reduction problem and analyze them on two examples: a syn-
thetic 100-component mixture with several dominant modes and a
real-world mixture stemming from the work on people trajectory
analysis in video data [2].

Outline of the paper is as follows. The general framework of
exponential family mixtures is introduced in Section 2 together
with a brief survey on distance measures between probability dis-
tributions and definition of composite distance measures. Section 3
presents the component number reduction in exponential family
mixtures as a constrained optimization problem. In Section 4 we
discuss two suboptimal solution strategies and additionally con-
sider the joining algorithm. Numerical experiments on two exam-
ples of circular data are performed and obtained results are
discussed in Section 5. Finally, Section 6 concludes the paper by
outlining main achievements and commenting on possible
extensions.

2. General background

In this section we introduce exponential family distributions
and the von Mises distribution as their subclass, we recall the no-
tion of finite mixture distributions and discuss variety of distance
measures between probability distributions emphasizing on com-
posite distance measures between mixtures.

2.1. Exponential family distributions

A parametric set of probability distributions defined on a sam-
ple space X and parametrized by the natural parameter h 2 H � Rd

is called exponential family if their probability densities admit the
following canonical representation

pFðx; hÞ ¼ expðTðxÞ � h� FðhÞ þ CðxÞÞ; x 2 X : ð1Þ

Map T : X ! Rd is called the minimal sufficient statistics, and func-
tions F and C denote the log-normalizer (or log-partition) and the
carrier measure, respectively. It can be proved that H ¼ DomðFÞ is
a nonempty convex set, and F is convex and unique up to an addi-
tive constant [28]. Moreover, if the exponential family is regular (i.e.
H is open), then F is strictly convex and differentiable on H [18]. In
further, the exponential family accompanied with the convex func-
tion F will be denoted by EF .

Many well known parametric distributions, like Gaussian, Pois-
son, Gamma, and Dirichlet, are exponential families [6]. For the
reader’s convenience, recall the simplest example of the univariate
Gaussian distribution

pðx; l;r2Þ ¼ 1ffiffiffiffiffiffiffi
2p
p

r
exp �ðx� lÞ2=2r2

� �
;

with standard parameters ðl;r2Þ, which is an exponential family
with natural parameter h ¼ ðl=r2;1=2r2Þ 2 R2, sufficient statistics
TðxÞ ¼ ðx;�x2Þ, log-normalizer FðhÞ ¼ h2

1=4h2 þ logðp=h2Þ=2, and
CðxÞ ¼ 0. Canonical parametrizations (1) for other exponential fam-
ilies can be found in [29], and in the sequel we focus on our study
example – the von Mises distribution.

2.1.1. Von Mises distribution
The von Mises distribution is a probability distribution defined

on the unit circle, or equivalently on the interval ½0;2pÞ, with den-
sity function given by

pðx; l;jÞ ¼ 1
2pI0ðjÞ

exp j cosðx� lÞf g; 0 6 x < 2p; ð2Þ

where l 2 ½0;2pÞ denotes the mean angle, j P 0 is the concentra-
tion parameter, and I0 is the modified Bessel function of the first
kind and of order zero [5]. Recall, the modified Bessel function of
the first kind and of order n 2 N is defined by

InðjÞ ¼
1

2p

Z 2p

0
expðj cos nÞ cosðnnÞ dn: ð3Þ

In many ways von Mises distribution is considered as the circu-
lar analog of the univariate Gaussian distribution: it is unimodal,
symmetric around the mean angle l, and the concentration
parameter j is analogous to the inverse of the variance. Further-
more, it is characterized by the maximum entropy principle in
the sense that it maximizes the Boltzmann–Shannon entropy un-
der prescribed circular mean [5].

From (2) it can be readily derived that von Mises distribution
with standard parameters ðl;jÞ is an exponential family parame-
trized by the natural parameter h ¼ ðj cosl;j sinlÞ 2 H ¼ R2. The
minimal sufficient statistics is the standard parametrization of the
unit circle TðxÞ ¼ ðcos x; sin xÞ, the log-normalizer is given by

FðhÞ ¼ log 2pI0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

1 þ h2
2

q� �� �
; ð4Þ

and the carrier measure is trivial, CðxÞ ¼ 0.

2.2. Exponential family mixtures

A finite exponential family mixture distribution is a weighted
normalized sum of distributions belonging to the same exponential
family EF . Its density function is given by

pðxÞ ¼
XK

i¼1

wipFðx; hiÞ; x 2 X ; ð5Þ
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