
Object tracking and credal classification with kinematic data
in a multi-target context

Samir Hachour ⇑, François Delmotte, David Mercier, Eric Lefèvre
Univ. Lille Nord de France, F-59000 Lille, France
UArtois, LGI2A, F-62400 Béthune, France

a r t i c l e i n f o

Article history:
Received 15 February 2013
Received in revised form 25 January 2014
Accepted 25 January 2014
Available online 6 February 2014

Keywords:
Multi-target tracking
Credal classification
Data assignment
Target management

a b s t r a c t

This article proposes a method to classify multiple maneuvering targets at the same time. This task is a
much harder problem than classifying a single target, as sensors do not know how to assign captured
observations to known targets. This article extends previous results scattered in the literature and unifies
them in a single global framework with belief functions. Through two examples, it is shown that the full
algorithm using belief functions improves results obtained with standard Bayesian classifiers and that it
can be applied to a large variety of applications.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The problem of joint multi-target tracking and classification,
which is as old as the invention of radars, is a much more complex
task than the problem of tracking one target. Indeed it includes a
step, called the assignment problem, where sensors have to associ-
ate known objects to new captured observations. A full multi-
target tracking solution includes several interlaced components
such as the tracking component, the assignment component, the
hypothesis rejection (new or disappeared targets, etc.) and finally
the classification step. Probability-based solutions already exist
in the literature [1–7].

For about 40 years, other uncertainty models based on non-
additive measures have been developed, in particular the Transfer-
able Belief Model [8] based on belief functions [9,10] which is
sometimes referred to as the credal model. Applications of this
model can be found for example in classification tasks and decision
support systems [11]. Direct comparisons with Bayesian solutions
are presented in [12,13] with discrete variables or in [14] with
continuous variables.

Applications of this theory to multi-target tracking and classifi-
cation problems are scattered through several articles presenting
different approaches. In [15,13] and in [16] various distances

between belief functions are used to tackle the assignment prob-
lem. Ref. [15] has been recently improved in [17], but these two
references only tackles the assignment problem with uncertain
observations and do not cope with the tracking problem. In [14]
a solution to track and classify a single dynamical target is
proposed, but no extension to multi-target tracking is proposed.

The aim of this article is to gather these scattered results, to uni-
fy them in a single and consonant framework based on belief func-
tions, and to propose a solution for multi-target tracking and
classification using belief functions when no one exists in the re-
cent literature. The proposed solution also includes a step of
hypothesis rejection, which means that it manages new and disap-
peared targets.

The result is a complete solution to multi-target tracking and
classification in a cluttered environment. It mimics the standard
and well accepted Bayesian solutions, but it extends them, when
possible, with belief functions. A short preliminary version of this
article was presented in [18].

The well known Interacting Multiple Model (IMM) algorithm is
used to track multiple targets. The assignment of the observations
to known targets is performed by the means of a generalized Glo-
bal Nearest Neighbor algorithm. Target management is ensured by
a score functions representing the quality of targets tracks. Finally,
the classification step is realized with the Transferable Belief Model
instead of a classical Bayesian solution.

This article is organized as follows. An introduction to belief
function theory is presented in Section 2. Section 3 deals with
tracking problems. Assignment and hypothesis rejection problems
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are tackled in Section 4. Bayesian and proposed algorithms are
summarized in Section 5. Finally, two application examples are
detailed in Section 6. The first one involves an academic example
on aircraft classification with constant classes, it allows a compar-
ison with a Bayesian solution. The second example concerns a
pedestrian activity recognition, it highlights a first extension of
the proposed algorithm to time varying classes.

2. Belief functions

2.1. Main functions

This section introduces basic notions on belief functions theory,
which was firstly introduced by Dempster in [9] and extended by
Shafer [10] and Smets [8]. Knowledge is expressed on a discrete
set C ¼ fc1; c2; . . . ; cncg of nc mutually exclusive and exhaustive
hypotheses. Frame C is called the frame of discernment. A mass
mðAÞ with A # C is the part of belief supporting A that, due to a lack
of information, cannot be given to any strict subset of A [8]. A mass
function m (or basic belief assignment) has to satisfy:X
A # C

mðAÞ ¼ 1: ð1Þ

Throughout this article, 2C represents all the subsets of C. A set A
such that mðAÞ > 0 is called a focal element of m.

In addition to the mass function, two other functions are
defined in the following manner. The plausibility function Pl repre-
sents the total amount of belief that may be given to a subset A of C
with further pieces of evidence:

PlðAÞ ¼
X

A\B–;
mðBÞ: ð2Þ

Unlike the plausibility function, the belief function Bel repre-
sents the amount of belief that is certain and cannot be reduced:

BelðAÞ ¼
X
A�B

mðBÞ: ð3Þ

These functions are in one-to-one correspondence [10], so they
are used indifferently with the same term belief function when the
context is clear.

A belief function whose focal elements are singletons is called a
Bayesian belief function, it corresponds to a probability distribution
and respects the property of additivity:

PlðA [ BÞ ¼ PlðAÞ þ PlðBÞ; ð4Þ

with ðA; BÞ# 2C and A \ B – ;. In general, this relation is false and
belief functions are non-additive measures.

A belief function such that mðCÞ ¼ 1 respects PlðAÞ ¼ 1 for all A
subsets of C, A – ;. Denoted by m0, it is called the vacuous belief
function and represents the full ignorance.

2.2. Fusion rule and discounting

When more than one mass function is expressed on the same
frame of discernment, they can be fused to obtain a single repre-
sentation. The conjunctive combination used in this work assumes
independent and absolutely reliable sources. Let m1 and m2 be two
mass functions provided by two distinct sources and expressed on
the same frame of discernment C, their conjunctive combination is
defined as follows:

m12ðAÞ ¼ ðm1 m2ÞðAÞ ¼
X

A1\A2¼A

m1ðA1Þm2ðA2Þ: ð5Þ

Eq. (5) is the unnormalized rule, the normalized rule is referred to
as Dempster’s rule of combination, and is defined by:

m12ðAÞ ¼
P

A1\A2¼Am1ðA1Þm2ðA2Þ
1�

P
A1\A2¼;m1ðA1Þm2ðA2Þ

: ð6Þ

This rule is used in order to update a priori beliefs with online
measurements, as in Section 2.4.

The last example in this article involves the discounting of a
source of information. Such a discounting assumes that you can
estimate the reliability of a source by a factor k 2 ½0;1�. If k ¼ 1,
the source is considered as absolutely reliable, while if k ¼ 0, the
source must be discarded and replaced by a vacuous belief. Thus
the discounting mk of a given source mass function m is defined by:

mkðAÞ ¼ kmðAÞ if A – C;

mkðCÞ ¼ kmðCÞ þ 1� k otherwise:

�
ð7Þ

If several sources of information mi have to be fused, each one
with its own reliability ki, a classical approach is to first discount
all of them, and then to conjunctively fuse them using Eq. (5).
Several other fusion rules are defined, and for a review, readers
can refer to [19]. For example, contextual data can be included also
in the fusion process, see [20], and reliability factors can be
adapted online [21], although this is not used in this article.

2.3. Decision rule

Several belief function interpretations exist, among them the
Upper/Lower Probabilities (ULP), usually called imprecise probabil-
ities, and the Transferable Belief Model (TBM) of Smets. Basically
these models are equal when considering static knowledge, but
differ when conditioning steps are involved. Readers interested
in this topic can refer to [22]. In a few words, within an ULP model,
conditioning requires to condition every probability measure PðAÞ
compatible with the bounds defined by BelðAÞ 6 PðAÞ 6 PlðAÞ. Then,
the new bounds Belð:j:Þ and Plð:j:Þmust be recomputed by checking
every conditioned probability measures, and taking the new max-
imum and minimum, while within the TBM it suffices to condition
only the original BelðAÞ and PlðAÞ. Thus, the ULP model is more
computationally demanding. In a recent article [23], the ULP model
has been advocated in a classification problem. But the authors of
this article do not find the provided examples conclusive and the
advantage of the ULP model over the TBM remains unclear. Since
it is more complex to use, the TBM has been chosen in this article,
as in [14] for instance.

The TBM represents and manages knowledge with a two level
model. The first one, referred to as the credal level, concerns the
representation and the manipulation of the data. It is the place
where data are encoded, combined and updated with belief func-
tions without assuming probability measures [12]. Decisions are
made when necessary at a second level called the pignistic level,
where belief functions are transformed into a probability measures
using the pignistic transformation justified in [24] through ratio-
nality requirements and basic axioms. Pignistic probability BetP
is defined by:

BetPðfcigÞ ¼
X
ci2A

mðAÞ
jAjð1�mð;ÞÞ : ð8Þ

Let us remark that other decision rules have been introduced for
belief functions, among them the maximum of plausibility [25].
Comparing the drawbacks and advantages of all the decision rules
is outside the scope of this article, farther information can be found
in [24].

2.4. Generalized Bayes theorem

Bayes theorem enables to compute the a posteriori probability
from an a priori one. With likelihoods lðcijzÞ ¼ PðzjciÞ, where z is a
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