
Fuzzy m-ary adjacency relations in social network analysis:
Optimization and consensus evaluation

Matteo Brunelli a,b,⇑, Mario Fedrizzi c, Michele Fedrizzi c

a IAMSR, Åbo Akademi University, FIN-20520 Åbo, Finland
b Turku Centre for Computer Science, FIN-20520 Turku, Finland
c Department of Computer and Management Sciences, University of Trento, I-38122 Trento, Italy

a r t i c l e i n f o

Article history:
Received 30 April 2011
Received in revised form 3 November 2011
Accepted 4 November 2011
Available online 11 November 2011

Keywords:
Social network analysis
Fuzzy adjacency relations
Group decision making
Consensus
Eigenvector centrality

a b s t r a c t

The main contribution of this paper consists in extending the ‘soft’ consensus paradigm of fuzzy group
decision making developed under the framework of numerical fuzzy preferences. We address the prob-
lem of consensus evaluation by endogenously computing the importance of the decision makers in terms
of their influence strength in the network. To this aim, we start from centrality measure and combine it
with the fuzzy m-ary adjacency relation approach. In this way, we introduce a flexible consensus measure
that takes into account the influence strength of the decision makers according to their eigenvector cen-
trality. Moreover, we propose an optimization problem which determines the maximum number of the
most important decision makers that share a fixed desirable consensus level.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, social network analysis (SNA) has attracted the
interest of scholars in the field of decision making [1] since the net-
work model can be effectively used for modeling interactions be-
tween decision makers. Opinion similarity, for example, can be
represented by means of an adjacency matrix and several proper-
ties and indices developed for this kind of matrices can be trans-
lated into the decision making framework. The adjacency matrix
is a notion that has a strong interest in SNA, since it represents
important relationships between the nodes of the network. Unfor-
tunately, it has two main limitations: the first one is that it can be
used only for representing pairwise adjacencies, the second one is
that its crisp definition is not suitable to cope with the vagueness
that makes adjacency between two nodes be a matter of degree.
While the extension of binary adjacency relations to m-ary ones
is a problem that did not catch so far the attention of researchers
in SNA, some extensions of SNA have been proposed to a formal
context in which the network structure can be represented by fuz-
zy graphs [2], through the fuzzy generalization of the definition of
relation [3]. Accordingly, it is possible to take into account at the
same time the vagueness influencing the relationships between
the actors involved in the social dynamics and the qualitative nat-

ure of the variables/attributes. Some other approaches to SNA that
use fuzzy relations have been recently proposed. In [4] the notion
of regular similarity was represented by a fuzzy binary relation. In
[5], human-focused concepts associated with social networks are
formalized using set-based relational network theory and fuzzy
sets. In [6] a model was proposed for evaluating reciprocity of net-
works represented by means of fuzzy binary relations.

This paper aims to extend the preliminary results presented in
[7,8], where the imprecision permeating the relationships between
the nodes of a social network was modeled using fuzzy binary
adjacency relations [9] and higher dimensional fuzzy m-ary adja-
cency relations were constructed from the binary relations by
means of OWA functions [10]. This allowed to overcome both
limitations previously highlighted and to characterize the attitude
of the actors to connect each other moving continuously from non-
compensatory to full-compensatory situations. Considering that in
[7,8] we assumed that fuzzy binary adjacency relations were given,
now we extend our previous approach by assuming that adjacency
relations between decision makers are derived from their prefer-
ences on a set of alternatives, so that adjacency relations explicitly
represent the grade of agreement between the decision makers.
The flexible method we propose for deriving the adjacency
relations allows us to model different decision problems. In many
decision models, different weights are associated to the various
decision makers, which can be interpreted, according to the
context, as decision power, percentage representation, influence
capability, and so forth. Since we assume that decision makers
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are represented by nodes in a social network, a reasonable way to
weigh them endogenously is to use a centrality measure. Centrality
measure is a core concept in SNA that is used to describe a wide
spectrum of theoretical issues ranging from importance to influ-
ence to leadership [11–13]. Since adjacency and centrality are
two very closely connected notions and both influence the behav-
ior of the actors of social networks when addressing decision mak-
ing tasks, we consider that a suitable centrality measure is a proper
tool to evaluate the relevance of each decision maker in terms of its
influence power. More precisely, we choose the eigenvector cen-
trality [14], in analogy to Google’s PageRank algorithm, since this
centrality measure is particularly suitable to quantify the influence
of the network nodes and therefore to be used in a decision making
context. The quantification of the influence power of each decision
maker allows us to introduce a new approach to consensus evalu-
ation in the set of decision makers. First we order the decision
makers according to their influence power, then we compute the
internal agreement for all the coalitions of the m most influencing
decision makers, according to the paradigm introduced in [15] and
using the fuzzy m-ary adjacency relations. By considering all the
possible values of m, from 1 to the total number n of decision mak-
ers, we obtain a complete evaluation of the consensus in the most
influencing subgroups. The results can be reported in a bar chart
which provides a simple and effective synthesis of this type of con-
sensus evaluation. Our approach is in the spirit of [15–17], where
the so called ‘soft’ consensus paradigm in fuzzy group decision
making has been developed under the standard framework of
numerical fuzzy preferences. With soft consensus we basically
mean the treatment of both consensus and its formation as gradual
notions. The interested reader may also find in [18,19] complete
and critical overviews of the different approaches to consensus in
fuzzy group decision making, future trends included.

This paper is outlined as follows. Section 2 offers a presentation
of valued and fuzzy adjacency relations and shows how it is possi-
ble to derive an adjacency relation on a set of decision makers gi-
ven their preferences on a set of alternatives. In Section 3 the
construction of fuzzy m-ary adjacency relations is described, as
previously introduced in [7]. In Section 4, after a brief review of
the optimization problems already introduced in [7,8], we prove
a new result for one of them and propose another optimization
problem based on fuzzy m-ary adjacency relations. In the same
section we develop our novel approach to consensus evaluation,
focused on the most influencing decision makers as characterized
by eigenvector centrality. Section 5 presents a commented numer-
ical example on fraud classification in order to show how the pro-
posed optimization problems can be applied and the consensus
evaluation can be performed. Finally, Section 6 contains some con-
clusions as well as our views on possible future research.

2. SNA and adjacency matrix

SNA can be seen as the set of tools and techniques employed to
describe and analyze relations between entities [20]. Such entities
may be people, organizations, symbols in texts, elements of a data
set, geographical regions and so on. The primary focus is on the
relations between entities and not on the entities themselves or
their attribute description. From the mathematical perspective it
is safe to say that the techniques employed in SNA mainly stem
from graph theory and linear algebra. In fact, in SNA, the main tool
to represent the relationships between social objects is the adja-
cency matrix. Hereafter, we will consider a set D = {d1, . . . ,dn} of
decision makers (DMs). Then, an adjacency matrix A = (aij)n�n with
aij :¼ lA(di,dj) is a representation of an adjacency relation,
A # D � D, whose characteristic function is lA:D � D ? {0,1} such
that

lAðdi;djÞ ¼
1; if di is related to dj;

0; if di is not related to dj:

�
By definition [9], adjacency relations satisfy properties of reflex-

ivity, lA(di,di) = 1 "i, and symmetry, lA(di,dj) = lA(dj,di) "i,j. Note
that, unlike in equivalence relations, no transitivity condition is re-
quired to hold.

One of the main characteristics of matrix A is that it is a concise
synthesis of the pairwise relationships between elements in D, but
due to the fact that it does not take into account the strength of the
relationships, it could happen that, by using such type of adjacency
matrix, very different cases are treated in the same way, without
discriminating among situations where intensities of relationship
may be very different. This can seriously weaken the analysis of
a social network.

2.1. Valued and fuzzy adjacency relations

A fuzzy binary relation on a single set, hereafter called fuzzy
relation if not differently stated, is a fuzzy subset of the Cartesian
product, i.e. a relation R2 # D � D defined through the following
membership function

lR2
: D� D! ½0;1�: ð1Þ

Here also, by putting rij :¼ lR2
ðdi;djÞ, a fuzzy relation can be suitably

represented by a matrix R = (rij)n�n where the value of each entry is
the degree to which the relation between di and dj holds. In other
words, the value of lR2

ðdi; djÞ is the degree of truth of the statement:
‘di and dj are related’. Therefore, in the context of SNA

lR2
ðdi; djÞ ¼

1; if di has the strongest possible
degree of relationship with dj;

c 2�0;1½ if di is; to some extent; related with dj;

0; if di is not related with dj:

8>>><
>>>:

Moreover, let us remark that, in literature, the term adjacency
relation has often been considered interchangeable with tolerance
[21], proximity [18], and compatibility [9].

Fuzzy adjacency relations, as well as crisp adjacency relations,
are reflexive and symmetric. It is useful to spend some words
about symmetry. The assumption of symmetry, i.e. lR2

ðdi; djÞ ¼
lR2
ðdj; diÞ i; j ¼ 1; . . . ;n; is of great help for the model because it

allows such relations to be represented by means of undirected
graphs. Furthermore, in many real-world cases, symmetry is spon-
taneously satisfied by the nature of the relationship. In fact, it will
be clear that a relation of consensus genuinely satisfies the condi-
tion of symmetry.

As for the case of crisp adjacency relations, fuzzy adjacency
relations are not necessarily transitive. For this reason we remark
the difference between them and similarity relations, i.e. similarity
relations are fuzzy equivalence relations, which, conversely, are
defined to be transitive [3].

According to its definition, a fuzzy adjacency relation seems to
be a special case of a valued adjacency relation. That is, the set
[0,1] is not a necessary condition although is usually included in
the definition. As it has been remarked in literature [22], the unit
interval can consistently be substituted by any lattice, L, and there-
fore, the membership function can be generalized,

lR2
: D� D! L: ð2Þ

Thus, valued adjacency relations are easily meant to be fuzzy adja-
cency relations in their broader sense. In spite of this remark, whose
aim was that of underlying (i) the non-restrictive nature of the
range [0,1] and (ii) the extendibility of the results contained in this
paper, for sake of simplicity, we are going to use the real unit
interval.
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