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a b s t r a c t

We provide an overview of mean/averaging operators. We introduce the basic OWA operator and look at
some cases of the generalized OWA operator. We next look at the issue of importance weighted mean
aggregation. We provide a generalized formulation using a fuzzy measure to convey information about
the importances of the different arguments in the aggregation. We look at some different measures
and the associated importance formulation they manifest. We further generalize our formulation by
allowing for the inclusion of an attitudinal aggregation function. This allows us to implement many dif-
ferent types of aggregation including Max, Min and Median. Finally we provide a simple parameterized
formulation for generalized class of mean operators.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Consensus, which can be seen as a type of information fusion,
involves a process of getting a group of agents to agree upon a
solution to some problem [1–5]. Often in these types of problems
each of the individual agents have their own suggested solution
value. One important task in the formulation of a consensus is
the construction of a value or solution as a proposed answer [5].
This task often involves an aggregation [6–8] of the different
proposals provided by the individual participants. An important
property of any process used in this type of aggregation is idempo-
tency; if all the participating suggest the same solution this should
clearly be a good consensus solution. Aggregation operators that
manifest this idempotency are referred to as mean or averaging
operators. In support of this task we suggest a generalized frame-
work for implementing the mean operator and look at various for-
mulations that are special cases of this framework. Our focus here
to eventually enable the mathematical modeling of linguistically
expressed mean type aggregation imperatives. With this in mind
we try, as much as possible, to relate choice of parameters to
cognitive concepts.

2. Overview of mean operators

Assume vj are a collection of n numeric values. An important
type of aggregation that can be performed on these values is an
averaging. An average or mean, here we shall use the terms average
and mean synonymously, provides a kind of representative value
for the collection. The prototypical example of a mean aggregation
is the arithmetic mean, �v ¼ 1

n

Pn
j¼1v j. However this is not the only

mean type operation, Bullen [9] has a monograph on mean aggrega-
tion covering numerous types of means. In [6–9] the authors pro-
vide a useful discussion of mean aggregation.

A formal definition of a mean aggregation operator is the
following.

Definition. A mapping F:Rn ? R is called a mean operator if it has
the following properties:

(1) Symmetry: F(v1, . . . , vn) = F(vp(1), . . . , vp(n)), where p is a
permutation.

(2) Monotonicity: F(v1, . . . , vn) P F(b1, . . . , bn) if vj P bj for all j.
(3) Boundedness: Minj[vj] 6 F(v1, . . . , vn) 6Maxj[vj].

The boundedness is the key defining property of the mean oper-
ator as many types of aggregation operators have the first two
properties.

An immediate implication of the boundedness condition is the
idempotency of the mean, if all vi = v then F(v1, . . . , vn) = v. We note
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that in some cases the mean is defined using idempotency instead
of boundedness. As we easily see in the following idempotency and
monotonicity imply boundaries. Consider F(v1, . . . , vn), from mono-
tonicity F(v1, . . . , vn) 6 F(v⁄, . . . , v⁄), where v⁄ = Maxj[vj] and from
idempotency F(v⁄, . . . , v⁄) = v⁄. Similarly with v⁄ = Minj[vj] then
F(v1, . . . , vn) P F(v⁄, . . . , v⁄) = v⁄ = Min[vj].

We also note that from symmetry and monotonicity we can get
a more relaxed version of monotonicity. Assume for j = 1 to n we
have vj and bj. Let p be a permutation of the indices such that
vp(j) P bj for all j then f(vp(1), . . . , vp(n)) P f(b1, . . . , bn). However
from symmetry f(v1, . . . , vn) = f(vp(1), . . . , vp(n)) P f(b1, . . . , bn). Thus
if we have two sets of n values and if we can index them so that
vj P bj then the aggregation of the vj’s is at least as big as the
aggregation of the bj’s.

Example. Assume we grade a person by taking a mean of three
tests T1, T2, T2, Grade = F(T1, T2, T3). Consider two people x and y and
let us denote their scores on the test as Tj(x) and Tj(y) for j = 1–3.
Assume the scores are as follows:

T1ðxÞ ¼ 5 T1ðyÞ ¼ 6
T2ðxÞ ¼ 8 T2ðyÞ ¼ 2
T3ðxÞ ¼ 7 T3ðyÞ ¼ 3

If we permute the scores of y we can get

T1ðxÞ ¼ 5 T2ðyÞ ¼ 2
T2ðxÞ ¼ 8 T1ðyÞ ¼ 6
T3ðxÞ ¼ 7 T3ðyÞ ¼ 3

We see whatever mean we use Grade(x) P Grade(y).
One important property not generally available in mean opera-

tors is associativity. We recall a binary argument function f is asso-
ciative if f(f(v1, v2), v3) = f(v1, f(v2, v3)) = f(v1, v2, v3). One benefit of
associativity is that we can start with the definition of the aggrega-
tion of two arguments and the definition of the aggregation of any
number of arguments is determined. A second feature, one more
useful for calculations, is that if we have the aggregation for n argu-
ments we can use this directly to obtain the aggregation of n + 1
arguments

f ðv1; . . . ;vn; vnþ1Þ ¼ f ðf ðv1; . . . ; vnÞ; vnþ1ÞÞ

However, it is the loss of the first feature that is of more concern
when defining averaging operators especially in situations in which
we use the operators in aggregations with different cardinality of
arguments, here we must provide a definition of the aggregation
for each of the possible cardinalities. That is we must describe the
aggregation process for each value of n. While we can arbitrarily
assign a different type of mean operator for each n we normally de-
sire some ‘‘consistency’’ between the aggregations at different argu-
ment cardinalities. The classical mean, �v ¼ 1

n

Pn
j¼1v j, illustrates this.

Here we have expressed how to find the average for each n and have
done it is what appears a consistent manner.

In the literature there are many forms of mean aggregation oper-
ations, many of which are defined in a consistent matter over differ-
ent cardinalities of arguments [9]. While many of these are available
over the whole range of argument values others may require
non-negative arguments. In the following we shall assume the argu-
ments are all non-negative. Among some notable mean operators, in
addition to the basic arithmetic average, are the following:

Fðv1; . . . ;vnÞ ¼ n
Xn

i¼j

1
v j

 !�1

HarmonicMean

Fðv1; . . . ;vnÞ ¼
1
n

Xn

j¼1

v2
j

 !1=2

QuadraticMean

These are special cases of the power mean

Fðv1; . . . ;vnÞ ¼
1
n

Xn

j¼1

v r
j

 !1=r

for r – 0

We see that if r = 1 we get the arithmetic mean, if r = �1 we get
the harmonic and if r = 2 we get the quadratic.

A further generalization of the class of mean operators is the
quasi-arithmetic means. Here if g:R ? R, called the generating
function, is a continuous strictly monotone function then we define
a quasi-arithmetic mean by

Fðv1; . . . ;vnÞ ¼ g�1 1
n

Xn

j¼1

gðv jÞ
 !

The preceding examples are special cases of these for different g.
It is interesting to note that the geometric mean Fðv1; . . . ;

vnÞ ¼
Qn

j¼1v j

� �1=n
has g(x) = log(x). Another example of quasi-arith-

metic mean is the exponential mean here g(x) = eax for a – 0 and in
this case

Fðv1; . . . ;vnÞ ¼
1
a

ln
1
n

Xn

j¼1

eav j

 !

Each of these mean operators are aggregating the arguments
in some different manner. Some kinds of relationships can be
seen to hold with respect to these different aggregators [8]. Let
us denote

Fgðv1; . . . ;vnÞ ¼ g�1 1
n

Xn

j¼1

gðv jÞ
 !

Fhðv1; . . . ;vnÞ ¼ h�1 1
n

Xn

j¼1

hðv jÞ
 !

We observe that if g(x) = b h(x) + d and b – 0 then Fh(v1,
. . . , vn) = Fg(v1, . . . , vn). We also note that the two quasi–arithmetic
means Fh and Fg satisfy Fh(v1, . . . , vn) 6 Fg(v1, . . . , vn) if either the
composition g h�1 is convex and g is decreasing or g � h�1 is concave
and g is increasing. More specifically if g and h are power means
g(x) = xa and h(x) = xb and if a < b then

Fhðv1; . . . ; vnÞP Fgðv1; . . . ;vnÞ

We note that two other important examples of means are the
Max and Min operators

Fðv1; . . . ; vnÞ ¼ Maxj½aj�
Fðv1; . . . ; vnÞ ¼ Minj½aj�

We observe that if g(x) = xa and if a ?1 then F ? Max and if
a ? �1 then F ? Min. We note that these are respectively the
largest and smallest means, that is for any F we have

Minj½v j� 6 Fðv1; . . . ;vnÞ 6Maxj½v j�

This follows from the boundedness requirement.
Closely related to these is the median operator, which is also a

mean. We recall if n is odd then median f is defined as

Fðv1; . . . ;vnÞ ¼ v ðnþ1Þ
2½ �

where v ðnþ1Þ
2½ � indicates the nþ1

2 largest of the arguments. For the case,

where n is even we can define

Fðv1; . . . ;vnÞ ¼
1
2

v n
2½ � þ v n

2þ1½ �
� �

where v[k] indicates the kth largest argument. We note that other
possible definitions for the median in the case of even n, are,
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