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a b s t r a c t

We formulate a new ranking procedure in the traditional context where each voter has expressed a linear
order relation or ranking over the candidates. The final ranking of the candidates is taken to be the one
which best adheres to a natural monotonicity constraint. For a ranking a � b � c, monotonicity implies
that the strength with which a � c is supported should not be less than the strength with which either
one of a � b or b � c is supported. We investigate some properties of this ranking procedure and encoun-
ter some surprising preliminary results.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

We consider a ranking problem with r voters and k candidates,
where each of the r voters has expressed a linear order relation
over the k candidates, altogether making up a profile R (using
the nomenclature from [1]). We develop a ranking procedure that
chooses as the winning ranking the one which best adheres to the
constraint of monotonicity. For a ranking a � b � c, monotonicity
implies that the strength with which a � c is supported should
not be less than the strength with which either one of a � b or
b � c is supported. The notion of strength of support is taken to
be the number of voters who expressed the corresponding
pairwise preference. It is inspired by the intuitive idea that the
more clearly one candidate is better than another, the easier it is
for voters to indicate the ‘correct’ preference. This could be natural
when we suppose the existence of a ‘true’ ranking, of which the
rankings expressed by the voters are imperfect observations, and
the partially contradictory information thus obtained needs to be
fused in a proper way. However, even if no ‘true’ ranking exists,
in the case where personal preferences are the causal agents of
the differences in rankings expressed by the voters, the approach
we advocate makes sense, as we will discuss.

We describe the notations and conventions we adhere to in Sec-
tion 2. In this section we also describe the main contribution, the
ranking procedure based on monotonicity (in the remainder of
the text, we will omit ‘‘based on monotonicity’’ when no confusion
is possible). The underlying intuition is discussed in Section 3.

Section 4 contains an investigation into some properties of the
proposed ranking procedure. Some related concepts identified in
previous work are mentioned in Section 5. Finally, conclusions
and an outlook are provided in Section 6.

2. Problem setting and formulation of the ranking procedure

2.1. Preliminaries

We consider a set C of candidates {a, . . . ,k} and suppose a profile
R of linear order relations {�1, . . . ,�r} on the set of candidates C. An
example � for a three-alternative problem could be {(a,b), (a,c),
(a,d), (b,c), (b,d), (c,d)}, i.e., a � b � c � d. We denote the number
of times candidate a is preferred to candidate b by

FRða; bÞ ¼ jf�i 2 Rja �i bgj: ð1Þ

One could also formulate Fi(a,b) for each voter i, trivially taking
value 1 if a �i b and 0 otherwise. It then also holds that

FRða; bÞ ¼
Xr

i¼1

Fiða; bÞ: ð2Þ

In other words, FR : C2 ! f0;1; . . . ; rg. It is natural to call FRða; bÞ
the strength of support for (a,b). Due to R being a collection of lin-
ear order relations, it holds that

8a – b 2 C : FRða; bÞ þ FRðb; aÞ ¼ r: ð3Þ

If FRða; bÞ > r=2, we will write a �m b to denote that there is a
strict majority for a over b. When FRða; bÞP FRðb; aÞ, we say (a,b)
is supported.

Trivially, to each linear order relation �i corresponds a total
weak order relation <i. Furthermore, each linear order relation �i
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also implies a strict partial order relation .i on C2 n fða; aÞja 2 Cg de-
fined by:

ða;dÞ .i ðb; cÞ ()
def
ðða<ibÞ ^ ðc<idÞÞ ^ ðða�ibÞ _ ðc�idÞÞ: ð4Þ

To this strict partial order relation corresponds the trivially satisfied
monotonicity constraint

8ða;dÞ .i ðb; cÞ : Fiða;dÞP Fiðb; cÞ: ð5Þ

Obviously, if a � ib, then (a,b) .i (b,a) and 1 = Fi(a,b) P Fi(b,a) = 0.
Before we are able to define what it means for a ranking to be

optimal, we finally need to introduce the natural monotonicity
constraint. Condition (5) stipulates what is known about each Fi

with respect to the corresponding �i. We now will extend this to
a condition on FR with respect to a given ranking �. For a given
ranking � and corresponding ., the natural monotonicity
constraint on FR is the following:

8ða;dÞ . ðb; cÞ : FRða; dÞP FRðb; cÞ: ð6Þ

Condition (6) is now no longer trivially satisfied, as the voters
need not agree on the rankings of the alternatives. Yet, even in
the absence of unanimity, condition (6) can still be satisfied. When
condition (6) is not satisfied for any ranking �, we will have to look
for an F : C2 ! f0;1; . . . ; rg which does satisfy condition (6). Natu-
rally, we would prefer to have this F stay close to FR, with the dis-
tance between them given by dðFR; FÞ ¼

P
a;b2CjFða; bÞ � FRða; bÞj.

More formally:

Definition 1. For a given FR and a ranking �, a closest monotone
F : C2 ! f0;1; . . . ; rg is one satisfying:

(MON) "(a,d) . (b,c) : F(a,d) P F(b,c),
(REC) "a – b:F(a,b) + F(b,a) = r,
(OPT) 9= F 0 : C2 ! f0;1; . . . ; rg satisfying the above conditions

while dðFR; F 0Þ < dðFR; FÞ:

Observe that we only refer to F and FR in the definition above,
and not to R itself: As with many ranking procedures, the original
rankings are no longer used at this point. The monotonicity condi-
tion (MON) is a straightforward analog to condition (6), and de-
mands that F be monotone w.r.t. the ranking �. Next, the
reciprocity condition (REC) guarantees the total number of votes
will remain constant. Finally, (OPT) guarantees we stay as close
as possible to FR. As FRða; bÞ is a quantification of the number of
times voters preferred a to b, adapting FR amounts to changing
preferences by reversing them. Thus, we will also use the notion
‘reversing changes’, and ‘minimizing the number of reversing
changes’. By determining the number of reversing changes that is
needed in order to have a given FR be monotone w.r.t. a given rank-
ing �, we are able to quantify how close a given FR is to being
monotone w.r.t. this ranking. This leads us to the following natural
definition of a winning ranking:

Definition 2. For a given FR, an optimal ranking is a ranking �
(with a corresponding closest monotone F) for which it holds that
there exists no ranking �0 (with a corresponding closest monotone
F0) while dðFR; F 0Þ < dðFR; FÞ.

In other words, an optimal ranking is a ranking for which only a
minimal number of reversing changes need to be made to FR to
render it monotone w.r.t. it. In the remainder of the text, we will
denote such an optimal ranking by �R.

As a final remark, it is important to point out the relation of the
monotonicity condition to the strong stochastic transitivity condi-
tion (in our context, strong stochastic transitivity means that if
both (a,b) and (b,c) are supported, the strength of support for

(a,c) is at least as strong as the strongest support between (a,b)
and (b,c)): When FR is strong stochastic transitive, there exists a
ranking w.r.t. it is monotone. For more information in this context,
see our previous work on voting with intensities of preference [2].
We will also refer to the stochastic transitivity conditions in Sec-
tion 5.

2.2. The ranking procedure

It will be clear now that the problem of minimizing the number
of reversing changes is, in fact, a non-monotonicity problem: The
ranking �R yields the strict partial order .R, represented for a
four-alternative problem in Fig. 1, where the monotonicity con-
straint arises due to the demand that FR (or F) should not increase
on any downward path in Fig. 1. After all, an increase on a down-
ward path would mean that (MON) is violated. By now, it will be
clear that we could call a thus determined �R a ‘monotonicity-
based ranking’. However, we will use the less cumbersome name
‘optimal ranking’, as defined before.

We have exhaustively described how to solve (stochastic) non-
monotonicity problems in previous work [3–5], and we will not
discuss how to construct such an F here. In [3–5], we show the
problem to be a network flow problem, give clear directions how
to translate the original problem to one solvable by maximum flow
techniques, and point to the available algorithms to do so. In the
current setting we are able to employ regular monotonicity instead
of stochastic monotonicity, in contrast to a setting where voters
could assign intensities of preference to their votes, as in [2,5–8].

In the remainder of the paper, we will rather focus on the voting
aspect of the problem, the search for an �R which best adheres to
condition (6) for the given profile R. In other words, we aim to
determine to which ranking �R (out of all possible rankings) corre-
sponds a closest monotone F that is closest to FR. Regrettably, to a
single profile R can correspond multiple optimal rankings �R. If
there are indeed multiple optimal rankings, we will output all of
them.

A first approach to determine such a ranking �R would then be
to examine each possible ranking and corresponding closest mono-
tone F, and select the optimal one(s). Though examining each pos-
sible ranking renders the problem factorial in size, this is not
prohibitive in practice due to the limited number of candidates
in voting problems. Some electoral methodologies also examine
each possible ranking of the candidates, such as a method based
on Kendall’s Tau distance [9] and the Kemeny–Young method

Fig. 1. Graphical representation of .i for a ranking a � ib � ic � id, with a couple (x,y)
located above a couple (u,v) if (x,y) .i (u,v).
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